Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/35750
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Castrillón-Santana, Modesto | - |
dc.contributor.author | De Marsico, Maria | - |
dc.contributor.author | Nappi, Michele | - |
dc.contributor.author | Riccio, Daniel | - |
dc.date.accessioned | 2018-05-08T11:16:14Z | - |
dc.date.available | 2018-05-08T11:16:14Z | - |
dc.date.issued | 2017 | - |
dc.identifier.issn | 1077-3142 | - |
dc.identifier.uri | http://hdl.handle.net/10553/35750 | - |
dc.description.abstract | In this paper we focus on gender classification from face images. Despite advances in equipment as well as methods, automatic face image processing for recognition or even just for the extraction of demographics, is still a challenging task in unrestricted scenarios. Our tests are aimed at carrying out an extensive comparison of a feature based approach with two score based ones. When directly using features, we first apply different operators to extract the corresponding feature vectors, and then stack such vectors. These are classified by a SVM-based approach. When using scores, the different operators are applied in a completely separate way, so that each of them produces the corresponding scores. Answers are then either fed to a SVM, or compared pairwise to exploit Likelihood Ratio. The testbeds used for experiments are EGA database, which presents a good balance with respect to demographic features of stored face images, and GROPUS, an increasingly popular benchmark for massive experiments. The obtained performances confirm that feature level fusion achieves an often better classification accuracy. However, it is computationally expensive. We contribute to the research on this topic in three ways: 1) we show that the proposed score level fusion approaches, though less demanding, can achieve results that are comparable to feature level fusion, or even slightly better given that we fuse a particular set of experts; the main advantage over the feature-based approach relying on chained vectors, is that it is not required to evaluate a complex multi-feature distribution and the training process: thanks to the individual training of experts the overall process is more efficient and flexible, since experts can be easily added or discarded from the final architecture; 2) we evaluate the number of uncertain/ambiguous cases, i.e., those that might cause classification errors depending on the classification thresholds used, and show that with our score level fusion these significantly decreases; despite the final rate of correct classifications, this results in a more robust system; 3) we achieve very good results with operators that are not computationally expensive. | - |
dc.language | eng | - |
dc.relation | TIN2015 64395-R | - |
dc.relation.ispartof | Computer Vision and Image Understanding | - |
dc.source | Computer Vision and Image Understanding[ISSN 1077-3142],v. 156, p. 4-18 | - |
dc.subject | 120325 Diseño de sistemas sensores | - |
dc.subject | 120304 Inteligencia artificial | - |
dc.subject.other | Automatic gender classification | - |
dc.subject.other | Face images | - |
dc.subject.other | Multi-feature classification | - |
dc.subject.other | Feature level vs. score level fusion | - |
dc.title | MEG: Texture operators for multi-expert gender classification | - |
dc.type | info:eu-repo/semantics/Article | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.cviu.2016.09.004 | - |
dc.identifier.scopus | 84994508138 | - |
dc.identifier.isi | 000395357700002 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | 0000-0002-1391-8502 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.authorscopusid | 22333278500 | - |
dc.contributor.authorscopusid | 6508106114 | - |
dc.contributor.authorscopusid | 6603906020 | - |
dc.contributor.authorscopusid | 10939631000 | - |
dc.identifier.eissn | 1090-235X | - |
dc.description.lastpage | 18 | - |
dc.description.firstpage | 4 | - |
dc.relation.volume | 156 | - |
dc.investigacion | Ingeniería y Arquitectura | - |
dc.type2 | Artículo | - |
dc.contributor.daisngid | 32145428 | - |
dc.contributor.daisngid | 358632 | - |
dc.contributor.daisngid | 232794 | - |
dc.contributor.daisngid | 399991 | - |
dc.identifier.external | WOS:000395357700002 | - |
dc.contributor.wosstandard | WOS:Castrillon-Santana, M | - |
dc.contributor.wosstandard | WOS:De Marsico, M | - |
dc.contributor.wosstandard | WOS:Nappi, M | - |
dc.contributor.wosstandard | WOS:Riccio, D | - |
dc.date.coverdate | Marzo 2017 | - |
dc.identifier.ulpgc | Sí | - |
dc.contributor.buulpgc | BU-INF | - |
dc.description.sjr | 0,717 | - |
dc.description.jcr | 2,391 | - |
dc.description.sjrq | Q1 | - |
dc.description.jcrq | Q2 | - |
dc.description.scie | SCIE | - |
item.grantfulltext | restricted | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-8673-2725 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Castrillón Santana, Modesto Fernando | - |
Colección: | Artículos |
Citas SCOPUSTM
20
actualizado el 08-dic-2024
Citas de WEB OF SCIENCETM
Citations
12
actualizado el 08-dic-2024
Visitas
62
actualizado el 31-dic-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.