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Abstract

In this paper we focus on gender classification from face images. Despite ad-

vances in equipment as well as methods, automatic face image processing for

recognition or even just for the extraction of demographics, is still a challenging

task in unrestricted scenarios. Our tests are aimed at carrying out an exten-

sive comparison of a feature based approach with two score based ones. When

directly using features, we first apply different operators to extract the corre-

sponding feature vectors, and then stack such vectors. These are classified by

a SVM-based approach. When using scores, the different operators are applied

in a completely separate way, so that each of them produces the corresponding

scores. Answers are then either fed to a SVM, or compared pairwise to exploit

Likelihood Ratio. The testbeds used for experiments are EGA database, which

presents a good balance with respect to demographic features of stored face

images, and GROPUS, an increasingly popular benchmark for massive experi-

ments. The obtained performances confirm that feature level fusion achieves an

often better classification accuracy. However, it is computationally expensive.

We contribute to the research on this topic in three ways: 1) we show that

the proposed score level fusion approaches, though less demanding, can achieve

results that are comparable to feature level fusion, or even slightly better given

that we fuse a particular set of experts; the main advantage over the feature-

based approach relying on chained vectors, is that it is not required to evaluate
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a complex multi-feature distribution and the training process: thanks to the

individual training of experts the overall process is more efficient and flexible,

since experts can be easily added or discarded from the final architecture; 2) we

evaluate the number of uncertain/ambiguous cases, i.e., those that might cause

classification errors depending on the classification thresholds used, and show

that with our score level fusion these significantly decreases; despite the final

rate of correct classifications, this results in a more robust system; 3) we achieve

very good results with operators that are not computationally expensive.

Keywords: Automatic gender classification, face images, multi-feature

classification, feature level vs. score level fusion

1. Introduction

Demographic classification of people appearing in photos as well as in (real

time) videos is attracting increasing interest in the scientific community, and es-

pecially among biometrics researchers. The different possible uses span a wide

range. Among the commercially attractive ones, we find the possibility to im-

prove marketing strategies and recommendation systems, that can be better

tailored to the present user without explicit inquiry (for an example of the pos-

sible impact, see [1]). Possible further applications relate to Human-Computer

Interaction and Ambient Intelligence, by allowing tailoring interfaces or ambi-

ent services for classes of users. For instance, recognizing an elder user might

trigger automatically a suited visualization of elements on the screen, or ap-

propriate events in the environment [2]. Finally, as demonstrated in literature,

it is possible to increase the accuracy of biometric recognition in forensic and

security-related applications. It is interesting to point out that demographics,

and gender in particular, are always mentioned in the first place in almost all

works dealing with the so called soft biometric traits. Those traits are defined

as soft biometrics, since they are not able to univocally identify a subject, but

rather a subclass of the population. However, they can support new recognition

strategies [3], though they somehow remind of the earliest biometrics approaches
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derived from the work by Bertillon in the 19th century, namely Bertillonage.

As a matter of fact, in one of the earliest mentions of soft traits in biometric

recognition, Wayman [4] proposes their use just for filtering a large biometric

database. Limiting the number of entries to search in a database can greatly

improve the speed of the response. However, errors in filtering can degrade the

recognition performance. A different strategy to exploit soft biometrics is in [5].

In this case they are used to improve the accuracy of recognition in both verifi-

cation (identity claim, 1:1 matching) and identification (no identity claim, 1:N

matching) modes, by using them in combination with strong biometric traits

(e.g., fingerprints in the cited work) to enforce the system response. Soft bio-

metrics are exploited to improve face verification also in the very recent work

presented in [6].

The work in [7] goes further, by presenting experiments showing at which

extent the preliminary determination of those demographics can improve the

accuracy of identity recognition carried out by strong traits, e.g., face. In this

case, there is neither filtering (in the sense of applying the same system to a

subset of the gallery), nor a-posteriori enforcement of the response. Rather,

the idea is to train different systems on different traits/combination of traits,

and to choose the right one to submit the incoming sample. The approach

presented in the cited paper entails a human-in-the-loop approach, where an

operator submits the biometric sample to the most suited system in a set trained

beforehand on different combinations of demographic traits. An alternative

is presented in [8], where no human intervention is requested. The common

outcome is a significant increase of performance. In this paper, we focus on the

gender classification (GC) problem from face images.

It is to notice that the influence of demographics on human appearance can-

not be sharply identified, and yet is to be taken into account [9]. Moreover, GC

in turn can be affected by age and ethnicity. The first issue has been investigated

in [10], while the second one can be also related to the more general problem

of the “other-race” effect. This denomination refers to the fact that humans

are less proficient in discriminating demographics of people from other races,
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if not helped by elements like clothes or hair. This is often explained by psy-

chologists by the “contact hypothesis” [11]. This hypothesis suggests that the

effect occurs as a result of a longer and wider experience with one’s own- versus

other-race faces, especially during childhood, when cognitive categories are ac-

quired and consolidated. A somehow similar hypothesis may be formulated for

computational approaches, whose performance in GC can be positively affected

by a suitable, ethnicity-balanced training set, when a training phase is required.

As a matter of fact, the work in [12] demonstrates that ethnicity-specific gen-

der classifiers can improve the GC accuracy in a multiethnic environment. It

is interesting to notice that, at a different level of detail/classification (gender

vs. specific subject) this result is conceptually similar to the mentioned work

in [7]. Despite the specific demographics under investigation, the benchmark

dataset should be fairly balanced with respect to each factor [13], or specific

classifiers should be trained on specific features and then combined [8]. This is

the main motivation for choosing EGA (Ethnicity, Gender and Age) dataset [14]

as one of the datasets used in our experiments, since this aspect is especially

cared of. All EGA images are annotated with corresponding demographics in-

formation, that, in the present study, are used as the ground-truth for assessing

demographic classification performance. It is to underline that images in the

collection come from other popular face datasets, and are selected as to maintain

at a minimum the distortions due to pose, illumination and expression (PIE) to

better concentrate on demographics. As we will show in experimental results,

this kind of controlled conditions seems to produce such a kind of homogeneity

of images to also hinder GC. The 2015 NIST evaluation on GC [15] evidences

the difference between GC with constrained or controlled, and unconstrained

or in the wild datasets. A clear example of the second group is The images of

Groups (GROUPS) [16], that we use for further experiments.

We propose to address the problem of automatic GC from face images by

a multi-expert approach. We investigated the most appropriate choice and

combination strategy from a set of local operators, each able to capture different

aspects of images, to achieve accurate GC. As for combinations, we tested both
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feature level and score level fusion. According to current literature, the former

is expected to provide more accurate classification [17]. The reverse of the

medal is the use of more computational resources and of a most demanding

training process, since the feature vectors obtained are of larger size, namely

the sum of sizes provided by the single experts, unless a further expensive step of

feature selection/learning is performed. This also calls for more samples during

training. On the contrary, when exploiting score-level fusion, experts can be

trained individually, on smaller vectors, and this makes the training process

both easier and parallelizable, since it does not require to evaluate a complex

multi-feature distribution. Using the scores provided by the single experts as

elements in a new feature vector, for a further training/classification step, the

resulting size is equal to the number of experts. According to the quality of

achieved results, we might accept this as a good compromise between accuracy

and cost.

Before proceeding, it is worth underlining that we did not aim at demonstrat-

ing the performance of either new operators or new fusion strategies. Rather our

contribution can be summarized in the following three points. 1) The achieved

performance demonstrates that, when suitably applied, score fusion can provide

results that are comparable to those obtained by feature fusion. 2) We further

take into account the number of uncertain/ambiguous cases, and even when the

accuracy is similar in percentage, this number significantly decreases, i.e., less

situations arise that possibly require manual decision. This means that the ob-

tained system is overall more efficient. 3) The satisfying results are achieved by

the use of quite light/popular operators, and we consider this a further added

value. We find worth to especially underline the novelty of point 2). At the

best of our knowledge, no investigation in literature has taken into account in

a thorough manner the effect of different (combined) classification operators

on the number of ambiguous responses. Of course, this depends on both the

operator(s) exploited, and on the classification thresholds. Given a similar accu-

racy, this characteristic can be used to further differentiate among classification

performance and appreciate a possible higher robustness under this point of
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view.

This work extends [18] in three respects. First, we add GROUPS as a new

dataset for our experiments. The use of this new testbed of a significantly dif-

ferent size allowed us to assess possible influence on the performances of larger

scale datasets, and to analyze and discuss some issues regarding scalability, ro-

bustness (in particular, performance degradation/stability across different data

sources), and computational costs. Second, we test a larger number of local

operators. Third, a deeper analysis of robustness to classification ambiguity

(uncertain cases) is presented. The paper continues as follows. Section 2 sum-

marizes some related work. Section 3 shortly describes the operation of the

different local descriptors used. Section 4 illustrates score computation algo-

rithms as well as fusion strategies, and introduces the problem of ambiguous

classification. Section 5 shortly describes the datasets exploited for the experi-

ments. We present the results of our experiments in Section 6. Section 7 closes

the paper by drawing some conclusion and sketching future work.

2. Some related work

Face sex is particularly relevant for human interactions and for this reason

the cognitive mechanisms driving the process of GC, when carried out by hu-

mans, has been often investigated. Some interesting studies are mentioned in

[19]. In [20] the authors discuss how face GC is an extremely efficient cognitive

process, that is acquired early during childhood, able to achieve almost 100%

correct guesses for frontal unkown pictures. A subset of the experiments pre-

sented in [21] try to identify which are the cognitively critical zones exploited by

humans for GC. Unfortunately, there is no clear evidence of where such zones are

located in the face. The study carried out in [22] uses a pixelation filter to reduce

frontal pictures (28,672 pixels) of male and female faces to 7168, 1792, 448 and

112 pixels, in order to measure the minimum information required for correct

GC. The study tests the existence of sex differences in face gender processing,

and concludes that male faces are categorised more efficiently than female faces,
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and that in general subjects are more efficient in categorising same-sex faces.

Due to the possible applications of automatic GC mentioned above, this also

become a topic to investigate in biometrics and other fields. The final goal is to

extract human rules to reproduce them in automatic GC by computer. How-

ever, this is still an open research problem for both psychologists and computer

scientists.

Several physical and/or behavioral traits have been explored to tackle the

problem of computer GC. A complete survey of GC methods is out of the scope

of our work. The interested reader can refer to the work in [23]. The used bio-

metrics include in particular speech [24] [25], the shape of the full body, when

available [26], and the way of walking (gait) [27]. Performance achieved by com-

binations of traits have also been investigated, e.g., gait and face appearance

[28]. The most used trait, especially in approaches based on Computer Vision,

is without a doubt the face, alone (see the recent [29]) or in combination with

obvious candidates like hair and clothes [30]. When exploiting the face appear-

ance, the proposed approaches range from relatively more complex ones to those

especially targeted at real time applications. For instance, the proposal in [31]

uses dense Scale Invariant Feature Transform (SIFT) descriptors in combina-

tion with shape context. The computational burden of the former is decreased

by using AdaBoost to select only the most relevant features. The latter is a

scale and rotation invariant local descriptor that discretizes and indexes the

distances and orientations between all of the n points on a shape, where n is

a freely chosen parameter [32]. Another interesting face-based approach entails

learning Local Binary Patterns (LBP) for face-based GC [33].

Focusing on face-based GC we find many of the the same variety of ap-

proaches that are exploited to address recognition of a specific subject. Of

course, they are suitably adapted to address the coarser problem entailing only

the two classes Female vs. Male, and to try to grasp the best features to dis-

tinguish between the two. Geometric-based or appearance-based methods are

used, even if the latter are much more frequent in literature; in addition, also

some hybrid proposal can be found.
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In geometric-based methods, classification is based on distances between

pairs of fiducial points [19], which are important points/landmarks that identify

relevant elements of the face, such as the nose, mouth, and eyes. In some

respect, this approach resembles Bertillonage, one of the earliest attempts to

identify people by measures derived from physical traits. Studies using human

subjects aim at establishing the importance of these distances in discriminating

gender, however it is not well clear which are the critical zones that humans

consider to achieve the best accuracy [21]. Moreover, once identified, the points

must be accurately extracted and possibly aligned. An attempt to build a

discriminator from a number of 2D as well as 3D measures is presented in [34].

Simple distances between key points in the pictures, ratios and angles formed

between key points in the pictures, and 3D distances derived by combination

of full-face and profile photographs are analyzed through discriminant function

analysis to find the best discriminators.

In [19], the author selects 40 manually extracted points, which are chosen to

minimize the amount of error in their extraction. These points are used to cal-

culate 24 fiducial distances and two of them, namely the interpupillary distance

and the distance between the eye midpoint and the philtral ridges midpoint,

are used as normalizing factors of horizontal distances and vertical distances

respectively. The study exploits discriminant analysis and demonstrates that

only five of such normalized distances explain over 95% of the gender differences

of ”training” samples and predict the gender of 90% novel test faces with vari-

ous facial expressions. In the first case, the test is carried out with 52 pictures

from 26 males and 26 females of both the ARPA/ARL FERET database and

pictures taken in the author’s own laboratory. However, the set is not ethnicity

balanced: the images consisted of 47 Caucasians and 5 Asians. Prediction is

tested on a second set of 57 frontal pictures (26 female, 31 male faces) with

various facial expressions.

Appearance-based methods either exploit pixel intensity values directly, or

after some operation or transformation. These methods are sensitive to PIE

variations. Gaussian RBF kernel gives the best performance in the work in [35],
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where pixel intensity values are directly input to train the SVM. The work in

[36] rather uses simple pixels comparisons to find features to exploit an Ada

Boost approach. Haar-like features are used for real-time gender and ethnicity

classification of videos in [37].

A number of works rely on the above mentioned LBP introduced in [38]. The

work in [39] exploits LBP for multi-view GC. LBPs have been often used for GC

in combination with other information, e.g., shape features [40]. Some authors

argue that not all LBP bins may be equally relevant for GC, and the work in

[41] uses AdaBoost to learn the most discriminative ones. LBP also inspired a

number of variants, e.g., Local Gabor Binary Mapping Pattern used in [42]. In

this approach, a face image is first transformed and represented as a series of

Gabor magnitude pictures (GMP) by applying multi-scale and multi-orientation

Gabor filters. Afterwards each GMP is encoded as a LGBP image by a Uniform

Local Binary Pattern (ULBP) operator. Each obtained LGBP image is divided

into non-overlapping rectangular regions, and spatial histograms are extracted

from such regions. Combining regional histograms together to obtain a final

LGBP feature vector would produce a vector of too high dimension, therefore

suitable reduction techniques are investigated.

A further popular candiate for appearance-based GC is represented by SIFT.

These are used for example in [43] as features in a Bayesian approach to esti-

mate the posterior probability of a face trait at a specific time, conditional on

features identified in previous frames of a video sequence. Temporal dependen-

cies are represented by a Markov model. Classification requires determining the

maximum a posteriori class at a given time.

The hybrid approach in [44] exploits Haar wavelets as appearance features

and uses AdaBoost algorithm to select the stronger ones. Geometry features

are regarded as apriori knowledge that help achieving a better classification.

Active appearance model (AAM) is exploited to locate 83 landmarks. The

method gets 3403 geometry features, from which the 10 most significant ones

are picked, normalized and fused with the appearance features.

More complex methods have been proposed in literature, with even slightly
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better performance. However, our aim is to investigate the combination of sim-

ple operators and to test the best way to fuse their responses, in order to achieve

the best possible results. Having selected operators with a low computational

complexity that can be used in parallel, we aim at obtaining results close to the

state-of-the-art approaches with time performance suited for real time applica-

tions. Moreover, it is worth further underlining the contribution given by our

proposal not only in terms of net performance, but also in terms of thorough

investigation on the effect of different classifier (combinations) on the level of

uncertainty/ambiguity of results.

3. Local Descriptors/Experts

We consider the following collection of local descriptors, that have already

been applied in different scenarios of facial analysis: 1) Local Binary Patterns

(LBP) [45]; 2) Local Gradient Patterns (LGP) [46]; 3) Local Ternary Patterns

(LTP) [47]; 4) Local Derivative Patterns (LDP) [48]; 5) Weber Local Descriptor

(WLD) [49]; 6) Local Phase Quantization (LPQ) [50]; 7) Histogram of Oriented

Gradients (HOG) [51]; 8) Intensity based Local Binary Patterns (NILBP) [52] 9)

Local Salient Patterns (LSP) [53]; and 10) Local Oriented Statistics Information

Booster (LOSIB) [54].

Local Binary Patterns - LBP. LBP operator has been initially proposed

for texture classification. Afterwards, the work by Ahonen et al. [55] introduced

its use as descriptor for facial analysis. The original definition encodes the cen-

ter of a 3 × 3 window comparing its value with each of the neighboring ones.

Each neighborhood pixel is assigned a 1 if its value is greater than the central

pixel, and a 0 otherwise. The final central pixel code is produced concatenating

the 1s and 0s of the neighborhood into a binary number. Typically, a histogram

is used to represent the image. Given the above procedure, it is clear that LBP

coding is computed easily and quickly, and has proven its discrimination power

in different real world texture classification problems, thanks to its robustness

to monotonic gray-scale changes. Since its initial introduction, LBP definition
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has been modified in a number of ways. For instance, it has been extended to

arbitrary circular neighborhoods of radius R with P neighbors. In particular,

in order to achieve higher robustness in facial processing, they are computed

in a localized way. The normalized facial image is divided into a grid, and the

histograms computed from the single grid cells are chained to obtain the final

feature vector. As an alternative, a feature image F can be obtained, by sub-

stituting each pixel in the original image I by its LBP code.

Local Gradient Patterns - LGP. The LBP operator has attracted lots of

attention and multiple variants have been proposed recently. A number of alter-

natives are based on different comparison criteria and on different characteristics

in the pixel neighborhood. LGP operator makes use of the neighborhood gra-

dient values of a given central pixel. The gradient is computed as the absolute

value of intensity difference between the central pixel and each of its neighboring

ones. Compared to LBP, gradient values substitute pixel values in the neigh-

borhood of the central pixel, while their average substitutes the value of the

central pixel as a threshold; given these differences, LGP encoding is performed

similarly to LBP. Even in this case, a feature image F can be obtained from I,

by substituting each pixel with its LGP code.

Local Ternary Patterns - LTP. LTP extends LBP to 3-valued codes.

Gray levels within a intensity range of width ±t around the gray level gc of the

central pixel are quantized to 0, those above gc + t are quantized to +1 and

those below gc− t to −1. Since t is a user defined threshold, LTP codes may be

more resistant to noise, but no longer invariant to the kind of gray level trans-

formations tolerated by LBP. LTP operator produces a ternary code instead of a

binary one. However, several authors split each ternary pattern into its positive

and negative parts (Upper Pattern and Lower Pattern respectively). For repre-

sentation purposes, they may be used as two separate channels of descriptors,

and exploited for classification by computing separate histograms and similarity

metrics. The latter can be used individually or be combined. In the same way,

two different feature images FU and FB can be obtained.

Local Derivative Patterns - LDP. LBP may be considered as the represen-
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tation of first-order circular derivative pattern of images, i.e., a micro-pattern of

the binary gradient directions. LDP increases the coded information detail rep-

resenting a higher-order local pattern, by encoding directional pattern features

based on local derivative variations. The nth order LDP encodes the (n− 1)th

order local derivative direction variations. On the one side, LBP encodes the

relationship between the central pixel and its neighbors. On the other side, LDP

templates are more complex, extracting higher-order local information by en-

coding various distinctive spatial relationships contained in a given local region.

Given an image I, the first-order derivatives are denoted as I ′α where α=0◦, 45◦,

90◦ and 135◦. Given gc a point in I, and gp, p = 0, . . . , P − 1 its neighbors, the

four first-order derivatives at gc can be written as:

LDP 1(gc) =

 I ′0◦(gc) = I(gc)− I(g3), I ′45◦(gc) = I(gc)− I(g2),

I ′90◦(gc) = I(gc)− I(g1), I ′135◦(gc) = I(gc)− I(g0)

 (1)

The second-order directional LDP, LDP 2
α, in direction α is defined as:

LDP 2
α(gc) =

 f(I ′α(gc), I
′
α(g0)), f(I ′α(gc), I

′
α(g1)), . . .

. . . , f(I ′α(gc), I
′
α(g7)

 (2)

where f(., .) is a binary function which determines the type of local pattern

transition, and encodes the co-occurrence of two derivative directions at different

neighboring pixels:

f(I ′α(gc), I
′
α(gp)) =

 0, ifI ′α(gc) · I ′α(gp) > 0

1, ifI ′α(gc) · I ′α(gp) ≤ 0
(3)

Finally, the second order Local Derivative Pattern LDP 2(I) is the concatenation

of the codes according to each direction. Higher order derivatives are computed

in a similar way. For more details, see [48]. Feature images corresponding to

the different derivatives can be obtained as above.
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Weber Local Descriptor - WLD. WLD also encodes differences of pixel in-

tensity within a local neighborhood. However, it is inspired by Weber’s Law

stating that human perception of a pattern depends both on the change of a

stimulus and also on its original intensity. Accordingly, WLD comprises two

components: differential excitation and orientation. Even in this case, the two

components are computed for each pixel xc by considering it as the center of a

neighborhood. The former one is a function of the sum over such neighborhood

of the ratios between the intensity differences with each of the neighbors, and

the value of xc (for details see [49]). The orientation component is the gra-

dient orientation of the same xc, and computed as in [56]. For a given image,

both components make up a concatenated WLD histogram. For further details

see [49]. As for WLD, we use the code publicly available1, that produces the

pairs of values < differentialexcitation, orientation > using 8 values (3 bits)

for the former and 12 (4 bits) for the latter. We pack each pair in a 8 bit value

to produce a single gray level value, that is used to produce the feature image

F .

Local Phase Quantization - LPQ. The codes produced by LPQ are insensi-

tive to centrally symmetric blur (e.g., due to motion, or out of focus). Similarly

to previous descriptors, it is computed locally at every pixel location, then en-

coding the image as a histogram. The method is based on the blur invariance

property of the Fourier phase spectrum. Therefore, the local phase information

is extracted using the short-term Fourier transform (STFT) computed over a

square neighborhood at each pixel position x. For details see [50]. Feature im-

ages are computed as for LBP.

Histogram of Oriented Gradients - HOG. After dividing the input

image into a rectangular grid of cells, this descriptor computes a histogram

of the gradient orientations in each cell, representing the whole image by the

concatenation of the respective cell histograms. The influence of illumination

1http://www.cse.oulu.fi/CMV/Research/NewTextureDescriptors
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is addressed by normalizing each cell histogram taking into account the cell

neighborhood, known as block. In the experiments presented below, we make

use of the implementation by [57] that considers blocks of 2× 2 cells, and 9 bin

histograms. As for WLD, the values for the angle (4 bits) and the magnitude

(4 bits) of the gradient are packed in a single 8 bit code (gray level) to produce

the feature image F .

Intensity based Local Binary Patterns - NILBP. NILBP is another

LBP variant that tries to reduce the LBP oversimplification of local structure.

To do this, NILBP computes the difference of each pixel in the neighborhood

with the neighborhood mean, µ, instead of considering as reference the gray

value of the central pixel. The feature images are computed as for LBP.

Local Salient Patterns - LSP. This recent LBP redefinition focuses on

the location of the largest differences within the pixel neighborhood, to remove

the noise influence. The coding considers the possible pairs of neighbor indexes

(pdiffmax, pdiffmin) that provide respectively the maximum and the minimum

difference with the central value. Therefore there are 57 distinguished values

(the last one corresponds to equal differences for all neighbors). This descriptor

has reported better rates in different facial analysis. We have included 5 different

variants of it in the study below. In particular, LSP0 refers to computing the

difference of each pixel with respect to the central one of the neighborhood,

as described, and taking the histogram of values assigned to the central pixel

(or chain of histograms, if the image is divided into cells). LSP1 refers to

computing the difference of each pixel with respect to the following one in the

neighborhood. The code to assign to the central pixel is computed as above,

and also histograms are computed in the same way as LSP0. LSP2 refers to

the same procedure, where the difference is substituted by computing, for each

pi in the neighborhood, the (circular) value pi + pi+2 − 2pi+1. LSP01 refers to

chaining the results of LSP0 and LSP1, and finally LSP012 refers to chaining

the results of all three LSPn. The feature image F is obtained by summing the

codes from the three LSPn for each pixel.

Local Oriented Statistics Information Booster - LOSIB. This texture
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booster is based on LBP. The main difference is that it computes the local

oriented statistical information in the whole image. To do so, the intensity

differences in the 3× 3 neighborhood are computed as follows:

dk(xc, yc) = |gk − gc| (4)

being k = 0, 1, ..., p− 1. LOSIB computes the mean of all differences along the

p orientations for the m× n image pixels:

νk =

∑m
xc=1

∑n
yc=1 dk(xc, yc)

m · n
(5)

The image is described in terms of p mean values, i.e. {ν0, ν2, ..., νp−1}. As

for LOSIB, it was not possible to obtain a feature images with significant ap-

pearance. It is worth underlining that feature images are treated as gray level

images in all respects, since they capture specific trends in the original ones.

The lack of apparent significance suggests that any processing on the resulting

images would not lead to any usable result.

4. Score Computation and Fusion Strategies

4.1. Score Computation

Score computation by Likelihood Ratio (LR). The Likelihood Ratio

(LR) is used to evaluate the membership of a sample to a specific class, after

learning the class statistics. It has been introduced in biometrics to separate the

class of genuine probes (those belonging to users enrolled in the system), from

that of impostor probes (those belonging to unregistered users). The authors

of [58] experimentally assess that, consistently with the Neyman-Pearson lemma,

if, when False Acceptance Rate (FAR) is fixed at Ψ, we can find a constant η

which maximizes Genuine Acceptance Rate (GAR), then the LR test represents

the optimal test to assign the score vector X to either genuine or impostor class.
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However, as in other LR applications, optimality is constrained by the precision

of genuine and impostor score distributions estimates. Given a face image in

input, we use here LR to produce a gender-discriminative (Male/Female) score;

we then compare such score with a threshold properly fixed in advance, and

following the result of the comparison the system decides if the input face be-

longs either to the class Male or to the class Female. As already underlined, a

training phase is needed to estimate fMale(x) and fFemale(x) distributions, and

classification performance depends on the quality of such training.

All the experts in the system version that exploit LR for score generation

execute the same operation pipeline, with the only difference of the local opera-

tor O that each of them uses to extract relevant features from I and transform

it into a feature image F . For each pixel (x, y) in the image F the training

phase learns the probability distributions PrMale and PrFemale. We use a su-

pervised learning procedure, where the gender male / female is known for each

face image in the training set. In order to avoid training bias, training and

testing sets have obviously no intersection. During matching, each pixel in the

feature image F produces its own partial score s(x, y) that contributes to the

calculation of the final total score. The partial score is computed according to

the learned distributions using the standard formula for LR:

s(x, y) = 2 · log(fFemale(F (x, y)))

log(fMale(F (x, y)))
(6)

The partial score produced by Eq. 6 generally gets a negative value if the pixel

votes for the class Male and a positive value otherwise. The higher is the

absolute value of the assigned partial score, the greater is the confidence that

we can assign to the vote of that pixel for a class. There is an area of uncertainty

in the interval around the 0, for which the partial score can be considered noise,

rather than a really useful contribution for the calculation of the final score s.

For this reason, we fix a threshold thp for the partial score (here it has been

experimentally set to th = 1.3) . The final score is calculated as:

s =
1

S

∑
δ(s(x, y)) · s(x, y) (7)
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where δ is the Dirac function returning 1 only if |s(x, y)| ≥ thp and S =∑
x,y δ(s(x, y)). Similar considerations hold for the global score. A negative

value represents a classification in the Male class, while a positive value repre-

sents a classification as Female. Even for the global score we can consider as

uncertain/ambiguous those cases when the returned value is too close to the

border between classes. Here, we deal with ambiguity of global scores returned

by individual operators, and with ambiguity of fused scores too.

Score computation by Support Vector Machines (SVM). In [18], we

evaluated using SVM classifier with either linear or RBF kernels. It is interesting

to underline the contrasting results on the two datasets. As for EGA, since linear

kernel was the one achieving the best performance for most operators, and this

was confirmed with the added operators too, RBF is omitted from the results

presented in the present work. As for GROUPS, the opposite trend is observed,

therefore results by RBF are reported. The trade-off between margin and error,

i.e., parameter C, was always fixed at C = 1. Even in this case we considered

a decision threshold of 0 (negative vs. positive values). A SVM-based classifier

(both based on a single operator or on a combination) outputs a score that

also indicates the proximity of the sample to the threshold, and thus, as for

LR-based classification, might be further used to evaluate the possible quality

or ambiguity of the individual classification .

4.2. Feature Level and Score Level Fusion

There are different approaches to fuse the information provided by alter-

native experts. We may consider fusion either at feature, matching score, or

decision level. On the one side, feature level (FL) fusion retains most informa-

tion, but it is usually computationally more demanding due to the increase in

the feature vector length. Moreover, the larger size also causes to require much

more samples for methods based on a training phase. On the other side, decision

level (DL) fusion looses too much information before the final result. Therefore,

particularly when the number of experts to combine increases, score level (SL)

fusion achieves the best compromise among, speed, preserved information and
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performance.

In this work, we evaluate multi-expert systems using three different fusion

protocols.

F-SVM performs feature level fusion. In particular, it exploits Support

Vector Machines (SVM). A single linear SVM is trained on the feature vectors

obtained by combining those produced by the single operators. In our case, they

are obtained by stacking the histograms produced by the above described meth-

ods. More formally, given the set of experts, Ω = E1, E2, ..., En, the protocol

produces a new composed vector by combining the whole set of feature vectors

ΦEi,k
= fE1,k

, fE2,k
, ..., fEn,k

extracted from a given image Ik by the individual

experts Ei . Notice that each fEi,k
is a vector of variable size, depending on the

corresponding operator. Therefore the size of the final vector grows according

to the number of experts in a way that may hinder an effective and efficient

classification.

S-SVM also exploits SVM but uses score level fusion. It entails using several

first stage SVMs, each one trained on a different kind of feature vectors; even in

this case the individual feature vectors are represented by histograms produced

by the above methods. The protocol collects the responses of the individual

experts Ei for a given image Ik, and then feeds them to a second stage SVM

classifier. More formally, given the set of experts Ω = E1, E2, ..., En, and their

respective returned scores si,k for image Ik, a new feature vector is composed

as Σ = s1,k, s2,k, ..., sn,k , and fed to a preliminarily trained linear SVM. Notice

that each s1,k is a single score, therefore the size of the final vector is exactly

equal to the number of experts.

S-LR uses score level fusion in conjunction with Likelihood ratio (LR). The

single experts Ei produce their responses (scores) for a given image Ik using

the feature images produced by the adopted operators. The individual scores

are computed by LR, and afterwards the S-LR protocol combines them by ex-

amining them in pairs and selecting the best pair. More in detail, given a set

of experts Ω = E1, E2, ..., En, each of which produces a score si,k for the fea-

ture image computed from Ik, for each possible pair (Ei,k, Ej,k) with i 6= j,
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S-LR checks if both experts have voted for the same class (Male, Female),

or sign(si,k, sj,k). If this is true, the pair of experts is assigned a value of

si,j,k = sign(si,k) · √si,k · sj,k, which represents the fused score. Otherwise, the

protocol assigns the value si,j,k = 0 to the pair. At the end, the protocol S-LR

selects the pair of experts that provides the maximum si,j,k in absolute value,

or sglobal,k = Maxi,j(|si,j,k|) .

4.3. The Role of Ambiguous Answers

All the classification protocols described so far provide a score as output.

For a bi-class problem, the score sign can identify the class to which the sample

was automatically assigned (Male or Female). In our case, males are associated

to negative scores, and females to positive ones. Some samples obtain a score

close the the border value, i.e. 0. This circumstance suggests a possibly high

degree of uncertainty of the corresponding response. It is to point out and un-

derline that this ambiguity is not an inherent characteristic of the classifier, but

can affect from time to time single responses. In the same way, a very accurate

recognition system might provide in some cases less trustworthy responses, due

to temporary adverse conditions or to especially hard probes. Due to the singu-

lar nature of such phenomena, they usually remain uncovered when analyzing

system performance, which are usually evaluated from aggregate statistics (e.g.,

True Positive or True Negative rates). However, it is very important to quan-

tify the amount of this kind of responses too, to better appreciate the system

quality. It is possible to define a threshold ths that allows the system to indi-

cate whether the response can be considered reliable, if abs(sglobal,k) ≥ ths, or

not, otherwise. In the second case we consider the response ambiguous. Those

answers represent particularly complex cases for the system. In environments

demanding high classification accuracy, they should be treated separately and

differently. In the following we plot the curves relating the percentage of am-

biguous answers and the accuracy (percentage of correct classifications) of the

system versus variations of threshold ths (see Figure 4 in Section 6.2 for EGA,

and Figure 5 in Section 6.3 for GROUPS). It is worth underlining that strate-
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gies producing a similar correct classification rate can differ by the number of

ambiguous responses: of course, for similar accuracies, the lower this number,

the better. In practice, by discarding such responses and avoiding considering

them in computing system accuracy, the performance may further increase. In

any case, the lower their number the more robust is the system behavior. As

for the moment, we do not further process ambiguous responses. During real

operation, the way they are treated depends on the kind of application. For

instance, in a real time setting, they could trigger an alert to a possible hu-

man operator, who is in charge of either taking the final decision, or repeat the

capture, or definitively discard the probe.

5. The Image datasets

Two different datasets are considered below for this particular problem, to

provide conclusions in different scenarios of applications.

5.1. EGA

The aim of EGA (Ethnicity, Gender and Age face database) is to support

experiments on face demographics. To this aim, it has been designed and im-

plemented to provide demographics balance among dataset images, as well as

flexibility even along time. EGA integrates into a single dataset face images

extracted from different publicly available databases, in order to create a more

heterogeneous and representative dataset. In most cases, even if a database is

publicly available, it cannot be transferred. Therefore, in order to avoid copy-

right infringement, EGA has been conceived as a set of links and of annotations.

Links connect to files previously processed by appropriate scripts, while annota-

tions are provided to organize images according to demographic features such as

ethnicity, gender and age. Each researcher can ask and obtain on her/his own

the original datasets making up EGA. The scripts will reorganize and rename

all requested images, according to the structure that was devised for EGA. In

this way, it is possible to easily reconstruct the whole dataset, or parts of it,
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but even to expand it, as new datasets become available and after they are

annotated. In the present version of EGA, images are taken from CASIA-Face

V5 [59], FEI [60], FERET [61], FRGC [62], JAFFE [63], and the Indian Face

Database [64]. In particular:

• CASIA-Face V5 includes images captured in a single session by an USB

camera; image resolution is 640× 480, 16 bit color. Faces are captured at

different distances and can present illumination and pose variations, and

eyeglasses; most subjects are young and of Eastern ethnicity;

• FEI includes 14 colour images per subject; images resolution is 640×480;

faces have been acquired on a white background in FEI Laboratory in

Brazil, and belong to subjects from 19 to 40 years old, mostly of Latin

ethnicity;

• FERET dataset contains images of with resolution 256 × 384 for 8 bit

greyscale; faces are categorized in sets (fa, fb, dup I, dup II) according to

pose and acquisition period, and present slight variations in illumination

and expression; the dataset is heterogeneous with respect to ethnicity,

gender and age;

• FRGC includes images captured in controlled and non-controlled condi-

tions; image resolution is high: 1704×2272 for 24 bit color; most subjects

are of Caucasian ethnicity, and the number of subjects of other ethnicities

is quite marginal; subjects are also mainly concentrated in a same age

range (young/adult), while an adequate number of subjects is present for

each gender;

• JAFFE contains images mainly gathered for facial expression analysis;

image resolution 256× 256 for 8 bit greyscale; subjects are all female and

Japanese of apparently uniform age;

• Indian Face Database contains subjects in frontal pose with eleven dif-

ferent looking directions for each individual, plus some additional image
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when available; the dataset is divided into two folders, one for male and

one for female subjects; each image is 640 × 480 pixels, with 256 grey

levels per pixel, and is captured on a uniform background, with four ex-

pression variations; all subjects are of Indian ethnicity, with an adequate

distribution with respect to gender, but not with respect to age.

For sake of space, it is not possible to report here complete information about

each dataset. The interested reader can refer to the original papers for further.

However it is worth pointing out here that, being acquired at different times,

with different equipment and in different settings, each dataset has its own char-

acteristic specifications. This adds a further element of challenge to the final

EGA collection. Just because it was collected with the aim to support experi-

ments based on demographic traits, EGA does not include all images from the

above databases, but subsets allowing an overall good balance in demographics

composition and a lower influence of factors different from demographics (e.g.,

pose, illumination and expression - PIE). The present version of EGA includes

469 subjects from five ethnicities: a) African-American (53), b) Asian (111), c)

Caucasian (162), d) Indian (75), e) Latinos (68). For each ethnicity, subjects are

chosen to achieve the best possible balance between males and females. Gender

subgroups are further divided into three age groups: a) young, b) adult and

c) middle-aged, with adult being better represented due to the composition of

the original datasets. Table 1 summarizes numeric details about composition

characteristics. More on EGA can be found in [14].

5.2. GROUPS

The dataset The images of Groups (GROUPS) [16] is considered, in the

recent literature on the problem, the most challenging scenario for evaluating

solutions to biometric classification problems in the wild [15, 3]. This collec-

tion contains about 28, 000 annotated faces with large variations in terms of

illumination, resolution and pose.

The dataset is a collection of images of groups of people from Flickr im-

ages (see Figure 1). The collection was built upon gathering the results of

22



Table 1: EGA composition
 

Ethnicity  Gender  Age  

Caucasian 162 

Males 89 

Young 25 

Adult 50 

Middle-Aged 14 

Females 73 

Young 20 

Adult 33 

Middle-Aged 20 

Asian 111 

Males 54 

Young 34 

Adult 14 

Middle-Aged 6 

Females 57 

Young 33 

Adult 19 

Middle-Aged 5 

Indian 75 

Males 49 

Young 3 

Adult 37 

Middle-Aged 9 

Females 26 

Young 4 

Adult 15 

Middle-Aged 7 

Latinos 68 

Males 34 

Young 7 

Adult 19 

Middle-Aged 8 

Females 34 

Young 8 

Adult 16 

Middle-Aged 10 

African 

American 
53 

Males 20 

Young 3 

Adult 13 

Middle-Aged 4 

Females 33 

Young 16 

Adult 11 

Middle-Aged 6 

 

three searches: 1)”wedding+bride+groom+portrait”; 2)”group shot” or “group

photo” or “group portrait”; 3)”family portrait”. Undesirable images were re-

moved through a standard set of negative query terms. A maximum of 100

images are returned for any given image capture day, and the search is repeated

for 270 different days. The collection consists of 5,080 images containing 28,220

faces (14, 549 females and 13, 671 males), each labeled with age and gender. The

percentage of faces that can be automatically detected is about 86%, and this is

the subset usually exploited to face biometric algorithms. Many faces have low

resolution (the median face has only 18.5 pixels between the eye centers, and

25% of the faces have under 12.5 pixels). Given the source of the images, there
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Figure 1: Top row presents an original GROUPS sample (500 × 375 pixels). Bottom row

presents the extracted faces at normalized resolution (59 × 65 pixels). Given the face eye

locations, the image is rotated, re-scaled and cropped to place the center of each eye at

locations (16,17) and (42,17).

is a great amount of variation in many aspects. People often present (dark)

glasses, face occlusions, or unusual expressions. As expected, the variabilities

in GROUPS images provoke a decrease in the accuracy achieved, that therefore

hardly reaches 90%.

The most commonly used experimental setup is due to Dago et al. [65], This

work defines a 5-fold cross-validation using only the subset of faces that can be

automatically detected and present an inter-eye distance larger than 20 pixels,

i.e. 7241 female and 7133 male samples. For methods adopting this protocol

on GROUPS, the largest accuracy in GC achieved by exploiting only features

extracted from the whole facial pattern is 88.59% [66]. However, the fusion

with features specifically extracted from other regions, such as the periocular

and mouth ones, have recently reported an overall accuracy improvement [67].
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In this work, we focus exclusively on the whole facial pattern.

6. Experiments and results

Below we summarize the proposed strategies in terms of descriptors and

fusion policies, and the results achieved for both datasets. For each of them,

we first singularly analyze the whole collection of descriptors, to evaluate their

respective best grid configurations and their relative performance. Then, we

evaluate SL and FL fusion, and report the combinations providing the best

performance.

All results are reported in terms of accuracy, defined as the number of

correct classifications in relation to the total number of samples processed,

Acc = (TM+TF )
M+F , where TM and TF refer respectively to the number of correct

Male and Female classifications, while M and F indicate the number of total

male and female samples in the test set.

6.1. Summary of the explored classification strategies

For sake of readers, this section summarizes the core elements of the clas-

sification strategies that we have compared. Sections 3, 4 have presented re-

spectively the descriptors that we combine, two possible choices for score com-

putation, and fusion at different levels. Table 2 summarizes the most relevant

information. Furthermore, Figure 2 shows the flow of both training and testing

phases using the presented fusion strategies. As highlighted by the experiments

reported in [18], fusion at score level using LR on feature vectors extracted

from feature images (S-LR) achieves slightly worse or comparable results than

S-SVM, yet with lower computational demand. This trend is consistent with

the new experiments presented in this paper, as detailed in the following.

As a final comment, it is worth pointing out that SL combination does not

increase the processing cost in multi-core architectures, as the experts may be

computed in parallel. We have to consider the slowest expert and furthermore

the considerably shorter additional time for final fusion, so that a comparable

processing time w.r.t. to single operators may be reached.
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Figure 2: A schematic summary of the different fusion strategies. E= expert; V= feature

vector; I= feature image; S= score

Regarding the classification times achieved by the single operators, we antici-

pate here that there is a time complexity factor which is intrinsic to the operator

itself, and more specifically to the number of extracted features. Therefore con-

sistent results can be observed for EGA and GROUPS datasets (see Table 4

and Table 7 below for numerical values). Differences related to generally higher

classification times for EGA are due to the higher resolution of dataset images,

so that EGA is more demanding for building the feature vectors.

6.2. EGA

For the experimental setup, a subset of EGA has been chosen with a single

sample per identity with a random distribution between training and test sets.

This is done to remove, in a relatively reduced dataset, the bias that might

be produced by samples of the same identities in both sets. In summary 455

samples are analyzed in the evaluation protocol where 235 belong to the training

set (respectively 111 female and 124 male samples), and 220 to the test set

(respectively 103 female and 117 male).

After detecting the region of interest (ROI) containing the face using the
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algorithm by Viola-Jones [68], each selected sample has been normalized to fix

the centers of the eyes to specific locations, and rotated using such positions,

with resulting normalized images of 64× 100 pixels.

6.2.1. Single descriptor analysis

As mentioned above, for each expert we evaluated both linear and RBF

kernels. However, we only report the values provided by the linear one for EGA,

since it was in most cases the best, and those provided by RBF for GROUPS.

The trade-off between margin and error, i.e., parameter C, was always fixed at

C = 1. In all cases the accuracies are reported considering a decision threshold

of 0 (negative vs. positive values).

We tested different configurations for the single operators, in particular the

subdivision of the image according to different grid resolutions. Let us observe

that the best grid dimension to use depends on the specific descriptor used. Due

to the lack of space, detailed results concerning this aspect are included here

only for the leading descriptor, namely LSP012, that achieves the best overall

performance on EGA. Table 3 illustrates the accuracy for each grid resolution

(rowheading × columnheading), with darker to lighter colors indicating values

from worse to better.

It is possible to notice a diagonal trend in the dependence of accuracy on

grid size. This indicates that there is no dominating relationship between width

and height. There is a wide acceptable zone of possible combinations localized

towards the upper left corner of the matrix, that shows an equivalent behavior

of finer grids w.r.t. to coarser ones. The best performance of 96.36 is achieved

by a grid with 7× 5 resolution.

To summarize the results achieved using different configurations, we present

in Table 4, for each descriptor, the best grid resolution, the number of features,

the corresponding accuracies, and the average processing time per sample.
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6.2.2. Combination of descriptors

As we expected, the fusion of more experts achieves better results. Table 5

presents the top-10 best combinations of subsets of descriptors. There is an

evident improvement in relation to our previous work [18], reducing the classi-

fication error from 5.45% to 1.82%. This result is produced by the integration

of a larger collection of descriptors, with the consequent possibility of a better

choice.

In commenting the results, a first clear indication is that accuracy achieved

by fusion at score level is generally better than that obtained by fusion at feature

level, even if the best value is the same (98.18). It is also interesting to notice

that the combinations of operators providing this result for F-SVM is a subset

of those achieving the same best result for S-SVM, testifying the effectiveness of

these combinations for both fusion choices. Regarding the different classification

accuracies achieved on the two classes Female and Male, it is to point out that,

though comparable, the former is systematically slightly lower that the latter,

possibly indicating a slightly harder class due to higher variability (confusion).

It is worth exploring the results in more detail. In particular, the top row in

Figure 3 presents the EGA images causing the classification errors produced by

the best combination, i.e., the one that achieves the largest accuracy with the

lowest number of descriptors, namely the set {WLD,LSP2, LSP012}. Before

attempting a comment, it is worth reminding the reader that the training set

contains samples achieving scores within the range ±1. For the three leftmost

test samples in the Figure, the classification returns a score close to the clas-

sification border (−0.10, −0.08, 0.01, respectively). This means that, having

discarded such responses, the accuracy could have been even higher. However,

the right most sample (score 0.78) achieves a score that is clearly far from being

ambiguous. A detailed observation of the responses for the different experts

points out that the expert community does not agree, but those experts consid-

ering the sample female got a higher value.

This example demonstrates that, considering that the SVM classifier pro-
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Figure 3: Reminding that the classifier assigns the male label to those images with a score

below 0: First row corresponds to EGA dataset classification errors obtained by the best

fusion combination. From left to right, their respective scores are: −0.10, −0.08, 0.01 and

0.78. Second row presents a subset of the GROUPS classification errors obtained for the first

fold: From left to right, their respective scores are: −1.54, −0.43, −0.10, 0.23 and 3.01.

duces a score as output, this value can also indicate the sample proximity to

the decision threshold. As mentioned above, this value can be further used to

evaluate the individual classification quality or ambiguity. The relation between

accuracy and ambiguous responses is depicted for the best single descriptor, best

SL and best FL fusion in Figure 4. In order to better interpret the figure, it is

worth reminding the meaning and role of ambiguous samples. When identifying

ambiguous samples is relevant, a further parameter is added to the classifica-

tion system that defines a threshold ths indicating whether the response can be

considered reliable. The condition to meet is that abs(sglobal,k) ≥ ths. Ambigu-

ous answers represent complex cases possibly requiring special policies. The

curves put in relation the percentage of ambiguous answers and the accuracy

of the system versus variations of threshold ths. Strategies producing a simi-

lar correct classification rate can differ by the number of ambiguous responses,

and, of course, for similar accuracies, the lower this number, the better. For

sake of simplicity, the plots avoid the explicit indication of the threshold. The

increasing value of the threshold is implicitly reflected by the increased percent-
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age of ambiguous answers. In other words, given the same set of images, the

higher the threshold the higher the number of ambiguous answers; by discard-

ing such responses, we experimentally demonstrate that the accuracy over the

remaining ones increases, and this testifies the importance of identifying such

cases. We plot the values only until the accuracy increases in a noticeable way.

Furthermore, a system providing more than 70% ambiguous answers would be

hardly useful. Notice that the accuracy values for a percentage of 0% ambiguous

responses are those reported in Table 4 and Table 5.

The above results were obtained using chains of histograms as feature vec-

tors. As for classification through feature images, we tested all the possible

subsets of the set of considered operators, and fusion was always carried out

at score level. In this case, grid subdivision is not applicable, since the feature

image is treated as a usual gray level image. For sake of space, we do not re-

port detailed performance analysis, since the obtained results were lower than

those obtained using histograms, and therefore less interesting. In particular,

the best result achieved by S-LR fusion is 93.30 and is obtained by the set

{LBP,LDP,WLD,HoG}, while the best accuracy achieved by S-SVM fusion

is 93.18 using the set {LDP,WLD,HoG}.

To compute the net improvement, ambiguous responses do not count in the

denominator of the expression for Accuracy. It is evidenced that those responses

that are farther from the classification border provide a better classification rate.

In fact, the higher number of ambiguous responses is caused by an increased

threshold, just meaning that the remaining answers are farther from the classifi-

cation border. Therefore, we can point out the compromise achieved: a slightly

lower number of useful responses vs. an increased classification precision. The

plot evidences the additional positive effect not revealed by the accuracy num-

bers. Indeed the combination of experts increase accuracy while reducing the

number of ambiguous cases.
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Figure 4: Ambiguous vs accuracy comparing the best results of single descriptors, of S-SVM

and F-SVM fusion approaches, and of some LR-based approaches for the EGA dataset.

6.3. GROUPS

As mentioned above, we have used this dataset due to the fact that it is

a popular dataset for assessing GC in the wild. Again the samples have been

normalized according to the eye locations, which are included in the ground-

truth information for the dataset, so obtaining normalized samples of 59 × 65

pixels.

We adopted the Dago’s experimental protocol [65], that defines a 5-fold

cross-validation that exploits the subset of larger faces in GROUPS, namely

those that are automatically detected. Each fold contains respectively around

11500 training and 3000 test images.

6.3.1. Single descriptor analysis

Table 6 summarizes the accuracy for each grid resolution (rowheading ×

columnheading) for the best descriptor evaluating GROUPS. In the table,

darker to lighter colors indicate values from worse to better accuracy.
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It is interesting to comment the results in this table also making a comparison

with Table 3. First, it is possible to notice a similar diagonal trend in the

relationship between grid size and accuracy, but this trend is sharper and more

evenly distributed over the matrix. In this case the region of best grid resolutions

is more clearly identifiable, and the best result of 87.81 is achieved in the very

corner of the matrix, i.e. 8×8. It is possible to conclude that, for both datasets,

finer grids summarize less information yet preserving a better local description

of details, and therefore produce a better accuracy.

Table 7 summarizes the best grid configurations, number of features and

accuracy for single operators as obtained for the Dago’s protocol applied to

GROUPS. The grid configurations were chosen after analyzing the first fold.

There is an evident performance decrease compared to EGA. The best accuracy

achieved by a single descriptor is due to HOG, that reports a mean accuracy of

87.48%. The reader may observe the different behavior of the descriptors for a

dataset of different nature.

6.3.2. Combination of descriptors

Once we have selected a grid configuration for each descriptor, we can eval-

uate the performance of their possible combinations. S-SVM fusion achieved

better results with much lower computational effort, with an even more signifi-

cant gap w.r.t. to F-SVM that the one highlighted for EGA in Section 6.2. For

this reason, in order to provide the reader with a more clear and less cluttered

set of results, Table 8 only report those ones. For S-SVM fusion, the best accu-

racy has been achieved by the combination of HOG, LGP and LPQ, reaching

an accuracy of 89.22%. The same combination making use of F-SVM fusion

reported a remarkable lower accuracy. This effect might be produced by the

large number of features in the LGP feature vector, that seems to be affecting

the benefits of the other two descriptors.

Regarding the difference in classification performance w.r.t. to Female and

Male classes, compared to EGA the differences are often less marked and also

in some cases inverted. This is reasonably due to the higher environmental
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variations presented in images from GROUPS, that cause a similar increment

in classification difficulty.

The above results were obtained using chains of histograms as feature vec-

tors. As for classification through feature images, grid subdivision is not appli-

cable. Similarly to EGA, even for GROUPS we tested all the possible subsets of

the set of considered operators, with fusion at score level. Even in this case we

only report the best obtained results. In particular, the best result achieved by

S-LR fusion is 79.62 using {LBP,LTPlow, LPQ,LSP}, while the best accuracy

achieved by S-SVM fusion is 79.73 using {LBP,LGP,WLD,LPQ,NILBP}.

Given these results, which are significantly lower than those showed above, for

sake of space we omit the full report.

It is interesting to notice an even more significant decrease of performance

with respect to the dataset size, if compared with the use of histograms.

The variation of the percentage of ambiguous responses for the best single

descriptor and for each fusion approach, and the way it influences classification

accuracy, is illustrated in Figure 5. The plot interpretation is similar to Figure 4

for EGA. The best S-SVM fusion behavior is similar to the one exhibited for

EGA. As a matter of fact, there is not just an increase in accuracy, but samples

located farther from the class border areas get better classified. The plot con-

firms that the FL fusion of the operators involved in the best SL combination,

decreases both accuracy and robustness against ambiguous responses.

Notwithstanding the similar trend, it is interesting to notice the more clear

and direct relation between accuracy and ambiguity with respect to EGA. This

is surely due to the more complex images in GROUPS, where higher variations

in pose, illumination, and expression (PIE) increase the possibility to get a face

image harder to classify.

6.4. Discussion

A first observation stems from the analysis of the curves resulting from the

variation of two thresholds, one used for deciding the classification between the

classes (Male/Female) and one set to detect possible ambiguity. The former is
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Figure 5: Ambiguous vs accuracy comparing the best results of single descriptors, of S-SVM

and F-SVM fusion approaches, and of some LR-based approaches for the GROUPS dataset.

fixed to 0 for all the approaches as the distributions are normalized (negative vs.

positive values). The second is used to discard the ambiguous responses. This

action improves the accuracy of the final classification of remaining samples,

but reduces the number of useful responses (accuracy is computed considering

unambiguous responses only). As a second observation, we notice that given the

fact that the accuracy is computed in relation to the number of useful responses,

the lower the number of ambiguous responses the better the system, even when

producing the same accuracy value.

The advantage of the fusion approaches is evident in Figures 4 and 5, which

show that the multi-expert approach reduces the number of errors due to am-

biguous cases. In order to maintain the figure readable, we only reported the

curves corresponding to the best single classifier and best experts fusions. It is

to point out the good performance of SL fusion. Due to the accuracy achieved,

it would be preferred even with slightly worse accuracy with respect to FL,
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since it is more flexible in terms of usability and cost, as it is better suited for

parallelization.

Last but not least, when passing from a smaller dataset, with images cap-

tured in more controlled conditions, to a larger, in the wild one, we notice

decreased performance yet similar trends and general behavior. While the for-

mer effect was expected, the latter one reinforces the validity of our results. In

particular, we demonstrate that detecting and handling ambiguous responses

can actually improve classification accuracy.

Results per class in both datasets indicate quite similar rates, but some

combinations achieve a slightly worse performance for females.

Related to computational cost, EGA requires larger processing time to com-

pute the features as the input images are larger. For EGA, WLD is clearly

the most expensive descriptor: when fast processing is a demand, that descrip-

tor should not be considered in any viable combination. For GROUPS, again

WLD is the slowest descriptor to compute, but luckily enough the combina-

tions achieving the best results do not use that descriptor. The system designed

allows deciding which descriptors to combine to build a faster GC system.

7. Conclusions

In this paper we have analyzed a wide collection of local descriptors for the

GC problem, increasing the variety of operators, and the nature of the evaluation

datasets, with respect to our previous work. Our proposal deals with the fusion

of the score output from the different operators, that we demonstrate offers a

better trade-off between accuracy and cost with respect to fusion of features.

We search for possible improvements in terms of both accuracy and reliability

(number of ambiguous responses among the classification results). The experi-

mental results have proven both benefits of combining more operators, i.e., the

ability to increase accuracy while reducing the number of ambiguous situations.

The latter allows the system to discard difficult samples while achieving a better

relative performance. This effect is certainly achieved at the cost of reducing
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the number of useful responses. However the fusion of more operators helps to

also reduce the number of ambiguous/not valid samples. In this sense, even if

similar accuracy is achieved in the overall dataset, a higher rate is obtained for

the classified samples.
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[65] P. Dago-Casas, D. González-Jiménez, L. Long-Yu, J. L. Alba-Castro,

Single- and cross- database benchmarks for gender classification under

unconstrained settings, in: Proc. First IEEE International Workshop on

Benchmarking Facial Image Analysis Technologies, 2011.

[66] M. Castrillón-Santana, J. Lorenzo-Navarro, E. Ramón-Balmaseda, Descrip-

tors and regions of interest fusion for gender classification in the wild.

Comparison and combination with convolutional neural networks, ArXiv

e-prints.

URL http://arxiv.org/abs/1507.06838v2

[67] M. Castrillón-Santana, J. Lorenzo-Navarro, E. Ramón-Balmaseda, Fusion

of holistic and part based features for gender classification in the wild, in:

New Trends in Image Analysis and Processing–ICIAP 2015 Workshops,

Springer International Publishing, 2015, pp. 43–50.

[68] P. Viola, M. J. Jones, Rapid object detection using a boosted cascade of

simple features, in: Computer Vision and Pattern Recognition, 2001, pp.

511–518.

43



Table 2: The core components used in the tested classification strategies with corresponding

acronyms used in the text and a brief explanation

 Full denomination Acronym Brief description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DESCRIPTORS 

Local Binary Patterns LBP Each pixel is used as a binarization threshold for its 

neighborhood and tis assigned the result string of binary vales; 

the result is a new image with the modified pixels, or an 

histogram of the obtained values; in the latter case a higher 

robustness can be obtained by chaining the histograms from a 

grid division. 

Local Gradient Patterns LGP Compared to LBP, gradient values substitute pixel values in 

the neighborhood of the central pixel, while their average 

substitutes the value of the central pixel as a threshold. 

Local Ternary Patterns LTP –  

LTPhigh – 

LTPlow 

LTP operator produces a ternary code instead of a binary one; 

each ternary pattern is split into its positive and negative parts 

(Upper Pattern or high, and Lower Pattern or low, 

respectively). 

Local Derivative Patterns LDP While LBP encodes the relationship between the central pixel 

and its neighbors, LDP templates extract higher-order local 

information by encoding various distinctive spatial 

relationships contained in a given local region. 

Weber Local Descriptor WLD WLD comprises two components: differential excitation and 

orientation, that encode the change of stimulus with respect to 

its original intensity; even in this case, the two components are 

computed for each pixel by considering it as the center of a 

neighborhood. 

Local Phase Quantization LPQ The local phase information is extracted using the short-term 

Fourier transform (STFT) computed over a square 

neighborhood at each pixel position x. 

Histogram of Oriented 

Gradients 

HOG This descriptor divides the image into cells, computes a 

histogram of the gradient orientations in each cell, representing 

the whole image by the concatenation of the respective cell 

histograms. 

Intensity based Local 

Binary Patterns 

NILBP NILBP computes the difference of each pixel in the 

neighborhood with the neighborhood mean, instead of 

considering as reference the gray value of the central pixel. 

Local Salient Patterns LSP The coding considers the possible pairs of neighbor indexes 

(pdiffmax; pdiffmin) that provide the maximum and the minimum 

difference with the central value respectively; there are 57 

distinguished values (the last one corresponds to equal 

differences for all neighbors). 

Local Oriented Statistics 

Information Booster  

LOSIB The main difference with LBP is that it computes the local 

oriented statistical information in the whole image. 

 

 

 

 

 

SCORE 

COMPUTATION 

Score computation by 

Likelihood Ratio 

LR All the experts execute the same operation pipeline, with the 

only difference of the local operator O that each of them uses 

to extract relevant features from I and transform it into a 

feature image F; for each pixel (x; y) in the image F the 

supervised training phase learns the probability distributions 

Prmale and Prfemale; during matching, each pixel in the feature 

image F produces its own partial score s(x; y) that contributes 

to the calculation of the final total score; the partial score is 

computed according to the learned distributions using the 

standard formula for LR. 

Score computation by 

Support Vector Machines 

SVM A linear kernel is used; the SVM-based classifier can be either 

based on a single operator or on a combination. 

 

 

 

 

 

 

FUSION 

Feature Level Fusion by 

SVM 

F-SVM A single linear SVM is trained on the feature vectors obtained 

by combining those produced by the single operators; in our 

case, they are obtained by stacking the histograms produced by 

the descriptors. 

Score Level Fusion by 

SVM 

S-SVM It entails using several first stage SVMs, each one trained on a 

different kind of feature vectors (histograms produced by the 

descriptors); the protocol collects the responses of the 

individual experts for a given image, and then feeds them to a 

second stage SVM linear classifier that has been preliminarily 

trained. 

Score Level Fusion by LR S-LR The single experts produce their responses (scores) for a given 

image using the feature images produced by the descriptors; 

the individual scores are computed by LR, and afterwards the 

S-LR protocol combines them by examining them in pairs and 

selecting the best pair. 

44



Table 3: Results obtained on EGA dataset for different grid configurations by LSP012 using

SVM with linear kernel. This descriptor achieves the best accuracy using a single operator.

1 2 3 4 5 6 7 8

1 74.09 74.55 81.82 85.00 80.45 87.27 84.55 86.36

2 75.00 75.91 82.73 84.09 86.36 90.45 90.00 88.64

3 76.36 83.64 87.73 89.09 91.82 95.00 90.91 92.73

4 82.73 86.82 88.18 92.73 94.09 95.91 91.36 93.18

5 81.36 85.91 90.91 90.45 94.09 90.91 90.91 92.27

6 79.09 87.27 86.36 90.00 92.27 94.55 94.09 92.27

7 79.09 87.27 88.18 91.82 96.36 94.55 92.73 94.09

8 83.18 86.82 90.45 90.45 94.09 93.64 91.36 94.09

Table 4: Best accuracy achieved per descriptor using SVM with linear kernel on EGA, mean

processing time per image (milliseconds for a Matlab implementation in a i7 quad core pro-

cessor with 4GB).

Feat. HOG LBPu2 LBP LTP LGP LPQ WLD LOSIB

Grid 8x8 7x8 7x7 4x6 4x6 7x4 8x8 5x6

# features 576 3304 12544 12288 6144 7168 16384 240

Acc. 91.82 93.18 91.82 94.09 90.91 94.09 95.91 90.00

t 22 59 168 224 216 128 1471 10

Feat. NILBP LSP0 LSP1 LSP2 LSP01 LSP012 LTPhigh LTPlow

Grid 8x7 8x5 6x6 7x6 8x5 7x5 4x7 4x6

#features 3304 2280 2052 2394 4560 5985 7168 6144

Acc. 92.73 92.73 91.82 89.55 94.55 96.36 95.00 94.09

t 126 403 300 291 334 393 77 39
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Table 5: Results on EGA for the best combinations of subsets of the considered operators

using SVM with linear kernel and either SL or FL fusion (in brackets per class Female/Male).

Features combined S-SVM Accuracy F-SVM Accuracy

WLD LSP2 LSP012 98.18 (98.06/98.29) 97.27 (97.09/97.44)

WLD LSP1 LSP2 LSP012 98.18 (98.06/98.29) 98.18 (98.06/98.29)

WLD LOSIB LSP2 LSP012 98.18 (97.08/99.15) 97.27 (97.09/97.44)

WLD LOSIB LSP1 LSP2 LSP012 98.18 (98.06/98.29) 98.18 (98.06/98.29)

LGP WLD LSP1 LSP2 LSP012 98.18 (98.06/98.29) 98.18 (98.06/98.29)

LGP WLD LOSIB LSP1 LSP2 LSP012 98.18 (98.06/98.29) 97.73 (97.09/98.29)

HOG WLD LSP1 LSP2 LSP012 98.18 (98.06/98.29) 97.27 (96.12/98.29)

HOG WLD LOSIB LSP1 LSP2 LSP012 98.18 (98.06/98.29) 97.72 (97.09/98.29)

WLD LSP2 97.73 (98.09/98.29) 95.91 (95.12/95.73)

WLD LOSIB LSP2 97.73 (96.12/99.15) 96.82 (96.12/97.44)

Table 6: Results obtained on GROUPS dataset (first fold) for different grid configurations by

HOG using SVM with RBF kernel. This descriptor achieves the best accuracy using a single

operator.

1 2 3 4 5 6 7 8

1 61.62 63.41 70.87 71.82 72.82 75.28 75.25 76.86

2 68.98 72.44 74.91 75.76 76.82 78.19 78.70 80.04

3 70.18 74.22 77.82 79.60 81.07 81.72 81.89 83.19

4 71.14 76.28 79.56 81.34 82.54 83.26 84.35 86.41

5 72.00 77.34 80.49 82.13 83.43 84.15 84.94 86.41

6 73.40 78.57 81.31 83.36 84.53 85.04 85.52 86.88

7 73.88 78.91 82.88 84.29 85.45 85.93 86.20 87.50

8 74.25 80.38 84.01 85.35 86.07 86.37 87.02 87.81
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Table 7: Best accuracy achieved per descriptor using SVM with RBF kernel on GROUPS,

mean processing time per image (milliseconds for a Matlab implementation in a i7 quad core

processor with 16GB).

Feat. HOG LBPu2 LBP LTP LGP LPQ WLD LOSIB

Grid 8x8 6x5 3x4 2x3 7x8 1x4 5x5 8x7

# features 576 1770 3072 3072 14336 1024 6400 448

Acc. 87.48 86.96 82.51 84.15 85.79 83.64 86.61 83.74

t 9 71 96 124 254 21 356 7

Feat. NILBP LSP0 LSP1 LSP2 LSP01 LSP012 LTPhigh LTPlow

Grid 7x6 6x5 6x7 5x8 6x4 3x4 3x4 2x4

Acc. 87.13 85.66 86.58 83.43 86.61 86.16 85.79 85.48

# features 2478 1710 2394 2280 2736 2052 3072 2048

t 84 107 117 111 149 122 103 69

Table 8: Results on GROUPS for the best combinations of subsets of the considered operators

using SVM with RBF kernel and SL fusion (in brackets per class Female/Male).

Features combined S-SVM Accuracy

HOG LGP LPQ 89.22 (89.22/89.21)

HOG LPQ NILBP 89.07 (89.24/89.11)

HOG LPQ LSP0 88.99 (88.84/89.16)

WLD NILBP LSP012 88.92 (88.15/89.59)

HOG NILBP LSP012 88.88 (88.53/89.15)

WLD NILBP LSP1 88.80 (87.66/89.84)

LBPu2 WLD LSP012 88.78 (89.22/89.51)

HOG LBPu2 LPQ 88.77 (88.64/88.90)

HOG NILBP LTPll 88.75 (88.28/88.99)

HOG LGP LSP012 88.73 (88.13/89.34)

47




