Identificador persistente para citar o vincular este elemento:
				https://accedacris.ulpgc.es/jspui/handle/10553/35729
			
		| Título: | Porting a PCA-based hyperspectral image dimensionality reduction algorithm for brain cancer detection on a manycore architecture | Autores/as: | Lazcano, R. Madroñal, D. Salvador, R. Desnos, K. Pelcat, M. Guerra, R. Fabelo, H. Ortega, S. Lopez, S. Callico, G. M. Juarez, E. Sanz, C. | Clasificación UNESCO: | 330790 Microelectrónica 220921 Espectroscopia | Palabras clave: | Dimensionality reduction Hyperspectral imaging Massively parallel processing Real-time processing | Fecha de publicación: | 2017 | Publicación seriada: | Journal of Systems Architecture | Resumen: | This paper presents a study of the parallelism of a Principal Component Analysis (PCA) algorithm and its adaptation to a manycore MPPA (Massively Parallel Processor Array) architecture, which gathers 256 cores distributed among 16 clusters. This study focuses on porting hyperspectral image processing into many core platforms by optimizing their processing to fulfill real-time constraints, fixed by the image capture rate of the hyperspectral sensor. Real-time is a challenging objective for hyperspectral image processing, as hyperspectral images consist of extremely large volumes of data and this problem is often solved by reducing image size before starting the processing itself. To tackle the challenge, this paper proposes an analysis of the intrinsic parallelism of the different stages of the PCA algorithm with the objective of exploiting the parallelization possibilities offered by an MPPA manycore architecture. Furthermore, the impact on internal communication when increasing the level of parallelism, is also analyzed. Experimenting with medical images obtained from two different surgical use cases, an average speedup of 20 is achieved. Internal communications are shown to rapidly become the bottleneck that reduces the achievable speedup offered by the PCA parallelization. As a result of this study, PCA processing time is reduced to less than 6 s, a time compatible with the targeted brain surgery application requiring 1 frame-per-minute. | URI: | https://accedacris.ulpgc.es/handle/10553/35729 | ISSN: | 1383-7621 | DOI: | 10.1016/j.sysarc.2017.05.001 | Fuente: | Journal of Systems Architecture[ISSN 1383-7621],v. 77, p. 101-111 | 
| Colección: | Artículos | 
Citas SCOPUSTM   
 
										
									
									
		
			
				
					
						38
					
					
				
			
			
		
		
								
										actualizado el 08-jun-2025
									
								Citas de WEB OF SCIENCETM
 Citations
										
									
									
		
			
				
					
						29
					
					
				
			
			
		
		
								
										actualizado el 08-jun-2025
									
								Visitas
79
										actualizado el 12-oct-2024
									
								Google ScholarTM
							Verifica
						Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.