Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/35707
Campo DC Valoridioma
dc.contributor.authorCabrera, Pedroen_US
dc.contributor.authorCarta, José A.en_US
dc.contributor.authorGonzález, Jaimeen_US
dc.contributor.authorMelian, Gustavoen_US
dc.date.accessioned2018-04-30T11:34:08Z-
dc.date.available2018-04-30T11:34:08Z-
dc.date.issued2017en_US
dc.identifier.issn0011-9164en_US
dc.identifier.urihttp://hdl.handle.net/10553/35707-
dc.description.abstractFor the purpose of managing the operation of a small-scale prototype of a sea water reverse osmosis desalination plant installed on the island of Gran Canaria (Spain) and enabling it to function with fluctuating power input, artificial neural network (ANN) models were incorporated into its control system. The ANN models were developed to generate feed flow and operating pressure setpoints (with the restriction of having to maintain the permeate recovery rate within a certain range) after taking into account not only the available electrical power but also the temperature and conductivity of the feedwater. It is concluded that the ANN models that were used after training and validation were able to successfully manage the random and widely varying available electrical power. The statistical hypothesis testing that was also performed showed no significant statistical differences (at 5% level) between the errors (both MAE and MAPE) conunitted when adapting power consumption of the plant to the available electrical power in the various operational tests using different feedwater characteristics.en_US
dc.languageengen_US
dc.relation.ispartofDesalination (Amsterdam)en_US
dc.sourceDesalination [ISSN 0011-9164], v. 416, p. 140-156, (Agosto 2017)en_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject250811 Calidad de las aguasen_US
dc.subject.otherDesalinationen_US
dc.subject.otherArtificial neural networken_US
dc.subject.otherFluctuating power inputen_US
dc.subject.otherReverse osmosisen_US
dc.titleArtificial neural networks applied to manage the variable operation of a simple seawater reverse osmosis planten_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.desal.2017.04.032en_US
dc.identifier.scopus85019115082-
dc.identifier.isi000403133100015-
dc.contributor.authorscopusid56331565000-
dc.contributor.authorscopusid7003652043-
dc.contributor.authorscopusid7404493946-
dc.contributor.authorscopusid54953765300-
dc.identifier.eissn1873-4464-
dc.description.lastpage156en_US
dc.description.firstpage140en_US
dc.relation.volume416en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid2885442-
dc.contributor.daisngid1198474-
dc.contributor.daisngid6322397-
dc.contributor.daisngid9192346-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Cabrera, P-
dc.contributor.wosstandardWOS:Carta, JA-
dc.contributor.wosstandardWOS:Gonzalez, J-
dc.contributor.wosstandardWOS:Melian, G-
dc.date.coverdateEnero 2017en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,955
dc.description.jcr6,603
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.orcid0000-0001-9707-6375-
crisitem.author.orcid0000-0003-1379-0075-
crisitem.author.orcid0009-0004-0826-0816-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameCabrera Santana, Pedro Jesús-
crisitem.author.fullNameCarta González, José Antonio-
crisitem.author.fullNameGonzález Hernández,Jaime-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.