Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/35490
Campo DC Valoridioma
dc.contributor.authorRavi, Danieleen_US
dc.contributor.authorFabelo, Himaren_US
dc.contributor.authorMarrero Callicó, Gustavoen_US
dc.contributor.authorYang, Guang-Zhongen_US
dc.date.accessioned2018-04-25T09:51:27Z-
dc.date.available2018-04-25T09:51:27Z-
dc.date.issued2017en_US
dc.identifier.issn0278-0062en_US
dc.identifier.urihttp://hdl.handle.net/10553/35490-
dc.description.abstractRecent advances in hyperspectral imaging have made it a promising solution for intra-operative tissue characterization, with the advantages of being non-contact, non-ionizing, and non-invasive. Working with hyperspectral images in vivo, however, is not straightforward as the high dimensionality of the data makes real-time processing challenging. In this paper, a novel dimensionality reduction scheme and a new processing pipeline are introduced to obtain a detailed tumor classification map for intraoperative margin definition during brain surgery. However, existing approaches to dimensionality reduction based on manifold embedding can be time consuming and may not guarantee a consistent result, thus hindering final tissue classification. The proposed framework aims to overcome these problems through a process divided into two steps: dimensionality reduction based on an extension of the T-distributed stochastic neighbor approach is first performed and then a semantic segmentation technique is applied to the embedded results by using a Semantic Texton Forest for tissue classification. Detailed in vivo validation of the proposed method has been performed to demonstrate the potential clinical value of the system.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Medical Imagingen_US
dc.sourceIEEE Transactions on Medical Imaging[ISSN 0278-0062],v. 36 (7907323), p. 1845-1857en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherManifold embeddingen_US
dc.subject.otherHyperspectral imagingen_US
dc.subject.otherSemantic segmentationen_US
dc.subject.otherBrain cancer detectionen_US
dc.titleManifold embedding and semantic segmentation for Intraoperative guidance with hyperspectral brain imagingen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticlees
dc.identifier.doi10.1109/TMI.2017.2695523
dc.identifier.scopus85029602887
dc.identifier.isi000409138700007-
dc.contributor.authorscopusid57201696886
dc.contributor.authorscopusid56405568500
dc.contributor.authorscopusid57195717566
dc.contributor.authorscopusid55539304100
dc.identifier.eissn1558-254X-
dc.description.lastpage1857-
dc.identifier.issue9-
dc.description.firstpage1845-
dc.relation.volume36-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid31450124
dc.contributor.daisngid2096372
dc.contributor.daisngid506422
dc.contributor.daisngid8873
dc.contributor.wosstandardWOS:Ravi, D
dc.contributor.wosstandardWOS:Fabelo, H
dc.contributor.wosstandardWOS:Callico, GM
dc.contributor.wosstandardWOS:Yang, GZ
dc.date.coverdateSeptiembre 2017
dc.identifier.ulpgces
dc.description.sjr1,895
dc.description.jcr6,131
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

70
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

57
actualizado el 15-dic-2024

Visitas

34
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.