Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/35490
DC FieldValueLanguage
dc.contributor.authorRavi, Danieleen_US
dc.contributor.authorFabelo, Himaren_US
dc.contributor.authorMarrero Callicó, Gustavoen_US
dc.contributor.authorYang, Guang-Zhongen_US
dc.date.accessioned2018-04-25T09:51:27Z-
dc.date.available2018-04-25T09:51:27Z-
dc.date.issued2017en_US
dc.identifier.issn0278-0062en_US
dc.identifier.urihttp://hdl.handle.net/10553/35490-
dc.description.abstractRecent advances in hyperspectral imaging have made it a promising solution for intra-operative tissue characterization, with the advantages of being non-contact, non-ionizing, and non-invasive. Working with hyperspectral images in vivo, however, is not straightforward as the high dimensionality of the data makes real-time processing challenging. In this paper, a novel dimensionality reduction scheme and a new processing pipeline are introduced to obtain a detailed tumor classification map for intraoperative margin definition during brain surgery. However, existing approaches to dimensionality reduction based on manifold embedding can be time consuming and may not guarantee a consistent result, thus hindering final tissue classification. The proposed framework aims to overcome these problems through a process divided into two steps: dimensionality reduction based on an extension of the T-distributed stochastic neighbor approach is first performed and then a semantic segmentation technique is applied to the embedded results by using a Semantic Texton Forest for tissue classification. Detailed in vivo validation of the proposed method has been performed to demonstrate the potential clinical value of the system.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Medical Imagingen_US
dc.sourceIEEE Transactions on Medical Imaging[ISSN 0278-0062],v. 36 (7907323), p. 1845-1857en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherManifold embeddingen_US
dc.subject.otherHyperspectral imagingen_US
dc.subject.otherSemantic segmentationen_US
dc.subject.otherBrain cancer detectionen_US
dc.titleManifold embedding and semantic segmentation for Intraoperative guidance with hyperspectral brain imagingen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticlees
dc.identifier.doi10.1109/TMI.2017.2695523
dc.identifier.scopus85029602887
dc.identifier.isi000409138700007-
dc.contributor.authorscopusid57201696886
dc.contributor.authorscopusid56405568500
dc.contributor.authorscopusid57195717566
dc.contributor.authorscopusid55539304100
dc.identifier.eissn1558-254X-
dc.description.lastpage1857-
dc.identifier.issue9-
dc.description.firstpage1845-
dc.relation.volume36-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid31450124
dc.contributor.daisngid2096372
dc.contributor.daisngid506422
dc.contributor.daisngid8873
dc.contributor.wosstandardWOS:Ravi, D
dc.contributor.wosstandardWOS:Fabelo, H
dc.contributor.wosstandardWOS:Callico, GM
dc.contributor.wosstandardWOS:Yang, GZ
dc.date.coverdateSeptiembre 2017
dc.identifier.ulpgces
dc.description.sjr1,895
dc.description.jcr6,131
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

73
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

61
checked on Mar 30, 2025

Page view(s)

34
checked on May 18, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.