Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/35490
Título: | Manifold embedding and semantic segmentation for Intraoperative guidance with hyperspectral brain imaging | Autores/as: | Ravi, Daniele Fabelo, Himar Marrero Callicó, Gustavo Yang, Guang-Zhong |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Manifold embedding Hyperspectral imaging Semantic segmentation Brain cancer detection |
Fecha de publicación: | 2017 | Publicación seriada: | IEEE Transactions on Medical Imaging | Resumen: | Recent advances in hyperspectral imaging have made it a promising solution for intra-operative tissue characterization, with the advantages of being non-contact, non-ionizing, and non-invasive. Working with hyperspectral images in vivo, however, is not straightforward as the high dimensionality of the data makes real-time processing challenging. In this paper, a novel dimensionality reduction scheme and a new processing pipeline are introduced to obtain a detailed tumor classification map for intraoperative margin definition during brain surgery. However, existing approaches to dimensionality reduction based on manifold embedding can be time consuming and may not guarantee a consistent result, thus hindering final tissue classification. The proposed framework aims to overcome these problems through a process divided into two steps: dimensionality reduction based on an extension of the T-distributed stochastic neighbor approach is first performed and then a semantic segmentation technique is applied to the embedded results by using a Semantic Texton Forest for tissue classification. Detailed in vivo validation of the proposed method has been performed to demonstrate the potential clinical value of the system. | URI: | http://hdl.handle.net/10553/35490 | ISSN: | 0278-0062 | DOI: | 10.1109/TMI.2017.2695523 | Fuente: | IEEE Transactions on Medical Imaging[ISSN 0278-0062],v. 36 (7907323), p. 1845-1857 |
Colección: | Artículos |
Citas SCOPUSTM
70
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
57
actualizado el 15-dic-2024
Visitas
34
actualizado el 18-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.