Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/35423
Título: | Developing time to frequency-domain descriptors for relaxation processes: local trends | Autores/as: | Medina, Juan S. Arismendi-Arrieta, Daniel J. Alemán, José V. Prosmiti, Rita |
Clasificación UNESCO: | 23 Química | Palabras clave: | Relaxation functions Simple/complex liquids Frequency and time domains |
Fecha de publicación: | 2017 | Publicación seriada: | Journal of Molecular Liquids | Resumen: | It is common practice while studying complex liquids to analyze their relaxations in time as well as in frequency. Unfortunately, there are not often at hand short and compact expressions corresponding simultaneously to the mathematical formulation of a same phenomenon in both spaces. Therefore, this work is focused towards the approximation of Fourier Transform of certain Weibull distributions (the time derivative of the Kohlrausch-Williams-Watts function) by Havriliak-Negami functions. In particular, it was found that a small interval of low frequencies are needed to recover the main traits of the relaxation for the stretched (beta < = 1) and squeezed (beta > 1) instances. However, it's easily recognizable that the weight of the low frequency part competes with the weight of the high frequency part, and the former distorts the power law behavior, diverging from -beta. In consequence, the tail's sturdiness influences the asymptotic trend of HN, suggesting a careful design of the approximant, the method of optimization, the absent of data errors, and of course the frequency domain. In this sense, we were able to explain how the asymptotic laws naturally emerge as a function omega, and validate the suitability-flexibility-instability of our local approximants. | URI: | http://hdl.handle.net/10553/35423 | ISSN: | 0167-7322 | DOI: | 10.1016/j.molliq.2017.08.034 | Fuente: | Journal of Molecular Liquids [ISSN 0167-7322], v. 245, p. 62-70 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.