Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/35423
Title: Developing time to frequency-domain descriptors for relaxation processes: local trends
Authors: Medina, Juan S. 
Arismendi-Arrieta, Daniel J.
Alemán, José V.
Prosmiti, Rita
UNESCO Clasification: 23 Química
Keywords: Relaxation functions
Simple/complex liquids
Frequency and time domains
Issue Date: 2017
Journal: Journal of Molecular Liquids 
Abstract: It is common practice while studying complex liquids to analyze their relaxations in time as well as in frequency. Unfortunately, there are not often at hand short and compact expressions corresponding simultaneously to the mathematical formulation of a same phenomenon in both spaces. Therefore, this work is focused towards the approximation of Fourier Transform of certain Weibull distributions (the time derivative of the Kohlrausch-Williams-Watts function) by Havriliak-Negami functions. In particular, it was found that a small interval of low frequencies are needed to recover the main traits of the relaxation for the stretched (beta < = 1) and squeezed (beta > 1) instances. However, it's easily recognizable that the weight of the low frequency part competes with the weight of the high frequency part, and the former distorts the power law behavior, diverging from -beta. In consequence, the tail's sturdiness influences the asymptotic trend of HN, suggesting a careful design of the approximant, the method of optimization, the absent of data errors, and of course the frequency domain. In this sense, we were able to explain how the asymptotic laws naturally emerge as a function omega, and validate the suitability-flexibility-instability of our local approximants.
URI: http://hdl.handle.net/10553/35423
ISSN: 0167-7322
DOI: 10.1016/j.molliq.2017.08.034
Source: Journal of Molecular Liquids [ISSN 0167-7322], v. 245, p. 62-70
Appears in Collections:Artículos
Show full item record

Page view(s)

16
checked on Feb 27, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.