Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/35376
DC FieldValueLanguage
dc.contributor.authorMadroñal, D.en_US
dc.contributor.authorLazcano, R.en_US
dc.contributor.authorSalvador, R.en_US
dc.contributor.authorFabelo, H.en_US
dc.contributor.authorOrtega, S.en_US
dc.contributor.authorCallico, G. M.en_US
dc.contributor.authorJuarez, E.en_US
dc.contributor.authorSanz, C.en_US
dc.date.accessioned2018-04-13T13:19:19Z-
dc.date.available2018-04-13T13:19:19Z-
dc.date.issued2017en_US
dc.identifier.issn1383-7621en_US
dc.identifier.urihttp://hdl.handle.net/10553/35376-
dc.description.abstractThis paper presents a study of the design space of a Support Vector Machine (SVM) classifier with a linear kernel running on a manycore MPPA (Massively Parallel Processor Array) platform. This architecture gathers 256 cores distributed in 16 clusters working in parallel. This study aims at implementing a real-time hyperspectral SVM classifier, where real-time is defined as the time required to capture a hyperspectral image. To do so, two aspects of the SVM classifier have been analyzed: the classification algorithm and the system parallelization. On the one hand, concerning the classification algorithm, first, the classification model has been optimized to fit into the MPPA structure and, secondly, a probability estimation stage has been included to refine the classification results. On the other hand, the system parallelization has been divided into two levels: first, the parallelism of the classification has been exploited taking advantage of the pixel-wise classification methodology supported by the SVM algorithm and, secondly, a double-buffer communication procedure has been implemented to parallelize the image transmission and the cluster classification stages. Experimenting with medical images, an average speedup of 9 has been obtained using a single-cluster and double-buffer implementation with 16 cores working in parallel. As a result, a system whose processing time linearly grows with the number of pixels composing the scene has been implemented. Specifically, only 3 mu s are required to process each pixel within the captured scene independently from the spatial resolution of the image.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Systems Architecture
dc.sourceJournal of Systems Architecture[ISSN 1383-7621],v. 80, p. 30-40en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherSupport Vector Machineen_US
dc.subject.otherHyperspectral imagingen_US
dc.subject.otherMassively parallel processingen_US
dc.subject.otherReal-time processingen_US
dc.subject.otherEnergy consumption awarenessen_US
dc.subject.otherEmbedded systemen_US
dc.titleSVM-based real-time hyperspectral image classifier on a manycore architectureen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.relation.conferenceConference on Design and Architectures for Signal and Image Processing (DASIP)
dc.identifier.doi10.1016/j.sysarc.2017.08.002
dc.identifier.scopus85028765915
dc.identifier.isi000413883100003-
dc.contributor.authorscopusid57192829417
dc.contributor.authorscopusid57192839213
dc.contributor.authorscopusid23005852100
dc.contributor.authorscopusid56405568500
dc.contributor.authorscopusid57189334144
dc.contributor.authorscopusid56006321500
dc.contributor.authorscopusid36447485600
dc.contributor.authorscopusid7006751614
dc.identifier.eissn1873-6165-
dc.description.lastpage40-
dc.description.firstpage30-
dc.relation.volume80-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid3360488
dc.contributor.daisngid3634522
dc.contributor.daisngid1888017
dc.contributor.daisngid2096372
dc.contributor.daisngid1812298
dc.contributor.daisngid506422
dc.contributor.daisngid693458
dc.contributor.daisngid384271
dc.contributor.wosstandardWOS:Madronal, D
dc.contributor.wosstandardWOS:Lazcano, R
dc.contributor.wosstandardWOS:Salvador, R
dc.contributor.wosstandardWOS:Fabelo, H
dc.contributor.wosstandardWOS:Ortega, S
dc.contributor.wosstandardWOS:Callico, GM
dc.contributor.wosstandardWOS:Juarez, E
dc.contributor.wosstandardWOS:Sanz, C
dc.date.coverdateOctubre 2017
dc.identifier.conferenceidevents121055
dc.identifier.ulpgces
dc.description.sjr0,255
dc.description.jcr0,913
dc.description.sjrqQ3
dc.description.jcrqQ3
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.event.eventsstartdate12-10-2016-
crisitem.event.eventsenddate14-10-2016-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

28
checked on Dec 8, 2024

WEB OF SCIENCETM
Citations

23
checked on Dec 8, 2024

Page view(s)

50
checked on Mar 16, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.