Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/35376
Title: SVM-based real-time hyperspectral image classifier on a manycore architecture
Authors: Madroñal, D.
Lazcano, R.
Salvador, R.
Fabelo, H. 
Ortega, S. 
Callico, G. M. 
Juarez, E.
Sanz, C.
UNESCO Clasification: 33 Ciencias tecnológicas
Keywords: Support Vector Machine
Hyperspectral imaging
Massively parallel processing
Real-time processing
Energy consumption awareness, et al
Issue Date: 2017
Journal: Journal of Systems Architecture 
Conference: Conference on Design and Architectures for Signal and Image Processing (DASIP) 
Abstract: This paper presents a study of the design space of a Support Vector Machine (SVM) classifier with a linear kernel running on a manycore MPPA (Massively Parallel Processor Array) platform. This architecture gathers 256 cores distributed in 16 clusters working in parallel. This study aims at implementing a real-time hyperspectral SVM classifier, where real-time is defined as the time required to capture a hyperspectral image. To do so, two aspects of the SVM classifier have been analyzed: the classification algorithm and the system parallelization. On the one hand, concerning the classification algorithm, first, the classification model has been optimized to fit into the MPPA structure and, secondly, a probability estimation stage has been included to refine the classification results. On the other hand, the system parallelization has been divided into two levels: first, the parallelism of the classification has been exploited taking advantage of the pixel-wise classification methodology supported by the SVM algorithm and, secondly, a double-buffer communication procedure has been implemented to parallelize the image transmission and the cluster classification stages. Experimenting with medical images, an average speedup of 9 has been obtained using a single-cluster and double-buffer implementation with 16 cores working in parallel. As a result, a system whose processing time linearly grows with the number of pixels composing the scene has been implemented. Specifically, only 3 mu s are required to process each pixel within the captured scene independently from the spatial resolution of the image.
URI: http://hdl.handle.net/10553/35376
ISSN: 1383-7621
DOI: 10.1016/j.sysarc.2017.08.002
Source: Journal of Systems Architecture[ISSN 1383-7621],v. 80, p. 30-40
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

28
checked on Dec 1, 2024

WEB OF SCIENCETM
Citations

23
checked on Nov 24, 2024

Page view(s)

50
checked on Mar 16, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.