Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/35330
Título: Mathematical model for localised and surface heat flux of the human body obtained from measurements performed with a calorimetry minisensor
Autores/as: Socorro, Fabiola 
Rodríguez de Rivera, Pedro Jesús 
Rodríguez de Rivera, Miriam
de Rivera, Manuel Rodríguez 
Clasificación UNESCO: 22 Física
221302 Física de la transmisión del calor
Palabras clave: Direct calorimetry
Heat conduction calorimeters
Isothermal calorimeters
Medical calorimetry
Non-differential calorimeters
Fecha de publicación: 2017
Publicación seriada: Sensors 
Resumen: The accuracy of the direct and local measurements of the heat power dissipated by the surface of the human body, using a calorimetry minisensor, is directly related to the calibration rigor of the sensor and the correct interpretation of the experimental results. For this, it is necessary to know the characteristics of the body’s local heat dissipation. When the sensor is placed on the surface of the human body, the body reacts until a steady state is reached. We propose a mathematical model that represents the rate of heat flow at a given location on the surface of a human body by the sum of a series of exponentials: W(t) = A0 + åAiexp(􀀀t/ti). In this way, transient and steady states of heat dissipation can be interpreted. This hypothesis has been tested by simulating the operation of the sensor. At the steady state, the power detected in the measurement area (4 cm2) varies depending on the sensor’s thermostat temperature, as well as the physical state of the subject. For instance, for a thermostat temperature of 24 C, this power can vary between 100–250 mW in a healthy adult. In the transient state, two exponentials are sufficient to represent this dissipation, with 3 and 70 s being the mean values of its time constants.
URI: http://hdl.handle.net/10553/35330
ISSN: 1424-8220
DOI: 10.3390/s17122749
Fuente: Sensors (Switzerland)[ISSN 1424-8220],v. 17 (2749)
Colección:Artículos
miniatura
Adobe PDF (3,31 MB)
Vista completa

Citas SCOPUSTM   

8
actualizado el 14-abr-2024

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 25-feb-2024

Visitas

120
actualizado el 17-feb-2024

Descargas

155
actualizado el 17-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.