Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/30029
Campo DC Valoridioma
dc.contributor.authorDarwish, M. A.en_US
dc.contributor.authorGraef, J. R.en_US
dc.contributor.authorSadarangani, Kishinen_US
dc.date.accessioned2018-02-16T13:41:12Z-
dc.date.available2018-02-16T13:41:12Z-
dc.date.issued2018en_US
dc.identifier.issn2156-907Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/30029-
dc.description.abstractIn this paper the authors study a fractional quadratic integral equation of Urysohn-Volterra type. They show that the integral equation has at least one monotonic solution in the Banach space of all real functions defined and continuous on the interval [0, 1]. The main tools in the proof are a fixed point theorem due to Darbo and a monotonicity measure of noncompactness.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Applied Analysis and Computationen_US
dc.sourceJournal of Applied Analysis and Computation[ISSN 2156-907X],v. 8, p. 331-343en_US
dc.subjectInvestigaciónen_US
dc.subject.otherDarbo theoremen_US
dc.subject.otherFractional integraen_US
dc.subject.otherMonotonic solutionsen_US
dc.subject.otherMonotonicity measure of noncompactnessen_US
dc.subject.otherQuadratic integral equationen_US
dc.titleOn urysohn-volterra fractional quadratic integral equationsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.11948/2018.331
dc.identifier.scopus85038429839
dc.identifier.isi000423714500017-
dc.identifier.urlhttp://api.elsevier.com/content/abstract/scopus_id/85038429839-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid23149136600
dc.contributor.authorscopusid7006790336
dc.contributor.authorscopusid55964919000
dc.identifier.eissn2158-5644-
dc.description.lastpage343-
dc.identifier.issue1-
dc.description.firstpage331-
dc.relation.volume8-
dc.investigacionCienciasen_US
dc.source.typearen
dc.type2Artículoen_US
dc.identifier.wosWOS:000423714500017-
dc.contributor.daisngid1038616
dc.contributor.daisngid70005
dc.contributor.daisngid298123
dc.contributor.wosstandardWOS:Darwish, MA
dc.contributor.wosstandardWOS:Graef, JR
dc.contributor.wosstandardWOS:Sadarangani, K
dc.date.coverdateFebrero 2018
dc.identifier.ulpgces
dc.description.sjr0,486
dc.description.jcr1,116
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Colección:Artículos
miniatura
pdf
Adobe PDF (328,27 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.