Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/25107
Título: | Assessment of component selection strategies in hyperspectral imagery | Autores/as: | Ibarrola-Ulzurrun, E. Marcello, Javier Gonzalo Martin,Consuelo |
Clasificación UNESCO: | 220921 Espectroscopia 330412 Dispositivos de control 220990 Tratamiento digital. Imágenes |
Palabras clave: | Remote sensing Hyperspectral sensor Feature-extraction Texture measurement Classification, et al. |
Fecha de publicación: | 2017 | Publicación seriada: | Entropy | Resumen: | Hyperspectral imagery (HSI) integratesmany continuous and narrowbands that cover different regions of the electromagnetic spectrum. However, the main challenge is the high dimensionality of HSI data due to the 'Hughes' phenomenon. Thus, dimensionality reduction is necessary before applying classification algorithms to obtain accurate thematic maps. We focus the study on the following feature-extraction algorithms: Principal Component Analysis (PCA),MinimumNoise Fraction (MNF), and Independent Component Analysis (ICA). After a literature survey, we have observed a lack of a comparative study on these techniques as well as accurate strategies to determine the number of components. Hence, the first objective was to compare traditional dimensionality reduction techniques (PCA, MNF, and ICA) in HSI of the Compact Airborne Spectrographic Imager (CASI) sensor and to evaluate different strategies for selecting the most suitable number of components in the transformed space. The second objective was to determine a new dimensionality reduction approach by dividing the CASIHSI regarding the spectral regions covering the electromagnetic spectrum. The components selected fromthe transformed space of the different spectral regions were stacked. This stacked transformed space was evaluated to see if the proposed approach improves the final classification. | URI: | http://hdl.handle.net/10553/30709 | ISSN: | 1099-4300 | DOI: | 10.3390/e19120666 | Fuente: | Entropy [ISSN 1099-4300], v. 19 (12), article number 666 | Derechos: | by-nc-nd | URL: | http://api.elsevier.com/content/abstract/scopus_id/85038369900 |
Colección: | Artículos |
Citas SCOPUSTM
20
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
19
actualizado el 15-dic-2024
Visitas
112
actualizado el 23-nov-2024
Descargas
106
actualizado el 23-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.