Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/20097
Título: MEG: Multi-Expert Gender classification from face images in a demographics-balanced dataset
Autores/as: Castrillón-Santana, Modesto 
De Marsico, Maria
Nappi, Michele
Riccio, Daniel
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Recognition
Fecha de publicación: 2015
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 18th International Conference on Image Analysis and Processing (ICIAP 2015) 
Resumen: In this paper we focus on gender classification from face images, which is still a challenging task in unrestricted scenarios. This task can be useful in a number of ways, e.g., as a preliminary step in biometric identity recognition supported by demographic information.We compare a feature based approach with two score based ones. In the former, we stack a number of feature vectors obtained by different operators, and train a SVM based on them. In the latter, we separately compute the individual scores from the same operators, then either we feed them to a SVM, or exploit likelihood ratio based on a pairwise comparison of their answers.
URI: http://hdl.handle.net/10553/20097
ISBN: 978-3-319-23230-0
ISSN: 0302-9743
DOI: 10.1007/978-3-319-23231-7_2
Fuente: Image Analysis and Processing — ICIAP 2015. ICIAP 2015. Lecture Notes in Computer Science, v. 9279 LNCS, p. 15-26
Colección:Capítulo de libro
miniatura
Preprint
Adobe PDF (252,95 kB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 24-nov-2024

Visitas

80
actualizado el 30-sep-2023

Descargas

250
actualizado el 30-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons