Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/17857
DC FieldValueLanguage
dc.contributor.authorDéniz Suárez, Oscaren_US
dc.contributor.authorLorenzo, J.en_US
dc.contributor.authorCastrillon, M.en_US
dc.contributor.authorMendez, J.en_US
dc.contributor.authorFalcón Martel, Antonioen_US
dc.contributor.otherMendez, Juan-
dc.contributor.otherLorenzo-Navarro, Javier-
dc.contributor.otherCastrillon-Santana, Modesto-
dc.contributor.otherDeniz, Oscar-
dc.date.accessioned2016-07-15T11:38:22Z
dc.date.accessioned2018-02-21T14:35:00Z-
dc.date.available2016-07-15T11:38:22Z
dc.date.available2018-02-21T14:35:00Z-
dc.date.issued2007en_US
dc.identifier.isbn978-3-540-74933-2en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10553/17857-
dc.description.abstractMost face recognition systems are based on some form of batch learning. Online face recognition is not only more practical, it is also much more biologically plausible. Typical batch learners aim at minimizing both training error and (a measure of) hypothesis complexity. We show that the same minimization can be done incrementally as long as some form of ”scaffolding” is applied throughout the learning process. Scaffolding means: make the system learn from samples that are neither too easy nor too difficult at each step. We note that such learning behavior is also biologically plausible. Experiments using large sequences of facial images support the theoretical claims. The proposed method compares well with other, numerical calculus-based online learners.es
dc.languageengen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 4713 LNCS, p. 365-374en_US
dc.subject120304 Inteligencia artificiales
dc.titleLearning to recognize faces incrementallyen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference29th Annual Symposium of the German-Association-for-Pattern-Recognitionen_US
dc.identifier.doi10.1007/978-3-540-74936-3_37en_US
dc.identifier.scopus38149107594-
dc.identifier.isi000249745000037-
dcterms.isPartOfPattern Recognition, Proceedings
dcterms.sourcePattern Recognition, Proceedings[ISSN 0302-9743],v. 4713, p. 365-+
dc.contributor.authorscopusid8562422200-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid22333278500-
dc.contributor.authorscopusid55377382200-
dc.contributor.authorscopusid56264673800-
dc.identifier.absysnet728066-
dc.identifier.crisid-;1729;2806;1222;2113
dc.description.lastpage374en_US
dc.description.firstpage365en_US
dc.relation.volume4713 LNCSen_US
dc.investigacionIngeniería y Arquitecturaes
dc.project.referenceUNI2005/18; TIN2004-07087es
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.type2Actas de congresosen_US
dc.identifier.wosWOS:000249745000037-
dc.contributor.daisngid599634-
dc.contributor.daisngid1190480-
dc.contributor.daisngid34923785-
dc.contributor.daisngid1636522-
dc.contributor.daisngid32145428-
dc.contributor.daisngid2527455-
dc.contributor.daisngid726480-
dc.contributor.daisngid6761927-
dc.identifier.investigatorRIDL-9297-2014-
dc.identifier.investigatorRIDL-1972-2014-
dc.identifier.investigatorRIDK-9040-2014-
dc.identifier.investigatorRIDNo ID-
dc.contributor.wosstandardWOS:Deniz, O-
dc.contributor.wosstandardWOS:Lorenzo, J-
dc.contributor.wosstandardWOS:Castrillon, M-
dc.contributor.wosstandardWOS:Mendez, J-
dc.contributor.wosstandardWOS:Falcon, A-
dc.date.coverdateDiciembre 2007en_US
dc.identifier.supplement-;1729;2806;1222;2113-
dc.identifier.conferenceidevents120575-
dc.identifier.ulpgces
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.orcid0000-0003-2628-7639-
crisitem.author.orcid0000-0002-7467-947X-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
crisitem.author.fullNameMéndez Rodríguez,Juan Ángel-
crisitem.author.fullNameFalcón Martel,Antonio-
crisitem.event.eventsstartdate12-09-2007-
crisitem.event.eventsenddate14-09-2007-
Appears in Collections:Actas de congresos
Thumbnail
Postprint
Adobe PDF (161,19 kB)
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Feb 25, 2024

Page view(s)

160
checked on Nov 2, 2024

Download(s)

253
checked on Nov 2, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



This item is licensed under a Creative Commons License Creative Commons