Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/17652
Campo DC Valoridioma
dc.contributor.authorAntón Canalís, Luisen_US
dc.contributor.authorSánchez Nielsen, Elenaen_US
dc.contributor.authorCastrillón-Santana, M.en_US
dc.date.accessioned2016-07-04T11:02:27Z-
dc.date.accessioned2018-06-15T09:25:49Z-
dc.date.available2016-07-04T11:02:27Z-
dc.date.available2018-06-15T09:25:49Z-
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/10553/17652-
dc.description.abstractVision-based applications designed for humanmachine interaction require fast and accurate hand detection. However, previous works on this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects to locate. This paper presents an approach which changes the detection target without limiting the number of detected gestures. Using a cascade classifier we detect hands based on their wrists. With this approach, we introduce two main contributions: (1) a reliable segmentation, independently of the gesture being made and (2) a training phase faster than previous cascade classifier based methods. The paper includes experimental evaluations with different video streams that illustrate the efficiency and suitability for perceptual interfaces.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of the 9th IAPR Conference on Machine Vision Applications, MVA 2005en_US
dc.sourceProceedings of the 9th IAPR Conference on Machine Vision Applications, MVA 2005, p. 506-509en_US
dc.subject120304 Inteligencia artificialen_US
dc.titleHand pose detection for vision-based gesture interfacesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjectes
dc.identifier.scopus84872558848-
dc.contributor.authorscopusid8921191600-
dc.contributor.authorscopusid13105159100-
dc.contributor.authorscopusid22333278500-
dc.identifier.absysnet725967-
dc.description.lastpage509-
dc.description.firstpage506-
dc.investigacionIngeniería y Arquitecturaen_US
dc.project.referenceTIN2004-07087es
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.type2Actas de congresosen_US
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Actas de congresos
miniatura
Preprint
Adobe PDF (122,61 kB)
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons