Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/16397
Title: Geometrical and spectral properties of the orthogonal projections of the identity
Authors: González, Luis 
Suárez Sarmiento, Antonio F. 
García León, M. Dolores 
UNESCO Clasification: 120111 Teoría de matrices
120110 Algebra lineal
12 Matemáticas
Keywords: Frobenius Condition Number
Approximate
Issue Date: 2013
Journal: Journal of Applied Mathematics 
Abstract: We analyze the best approximation AN (in the Frobenius sense) to the identity matrix in an arbitrary matrix subspace AS (A∈Rn×n nonsingular, S being any fixed subspace of Rn×n). Some new geometrical and spectral properties of the orthogonal projection AN are derived. In particular, new inequalities for the trace and for the eigenvalues of matrix AN are presented for the special case that AN is symmetric and positive definite.
URI: http://hdl.handle.net/10553/16397
ISSN: 1110-757X
DOI: 10.1155/2013/435730
Source: Journal of Applied Mathematics[ISSN 1110-757X],v. 2013 (435730)
Rights: by-nc-nd
Appears in Collections:Artículos
Thumbnail
Adobe PDF (1,93 MB)
Show full item record

Page view(s)

15
checked on Aug 8, 2020

Download(s)

20
checked on Aug 8, 2020

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.