Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/16334
Title: The meccano method for isogeometric solid modeling and applications
Authors: Escobar, J. M. 
Montenegro, R. 
Rodríguez, E. 
Cascón Barbero, José Manuel
UNESCO Clasification: 120613 Ecuaciones diferenciales en derivadas parciales
1206 Análisis numérico
Keywords: Trivariate T-spline
Isogeometric analysis
Volumetric parameterization
Mesh optimization
Meccano method
Método elementos finitos
Issue Date: 2014
Journal: Engineering with Computers 
Abstract: We present a new method to construct a trivariate T-spline representation of complex solids for the application of isogeometric analysis. We take a genus-zero solid as a basis of our study, but at the end of the work we explain the way to generalize the results to any genus solids. The proposed technique only demands a surface triangulation of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling and smoothing procedure...
URI: http://hdl.handle.net/10553/16334
ISSN: 0177-0667
DOI: 10.1007/s00366-012-0300-z
Source: Engineering with Computers[ISSN 0177-0667],v. 30, p. 331-343
Rights: by-nc-nd
Appears in Collections:Artículo preliminar
Thumbnail
Adobe PDF (12,15 MB)
Show full item record

SCOPUSTM   
Citations

7
checked on Apr 4, 2020

WEB OF SCIENCETM
Citations

7
checked on Apr 4, 2020

Page view(s)

8
checked on Apr 4, 2020

Download(s)

14
checked on Apr 4, 2020

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.