Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/158571
Campo DC Valoridioma
dc.contributor.authorCornejo, Diego Rodrigoen_US
dc.contributor.authorRavelo-García, Antonio G.en_US
dc.contributor.authorRodríguez, María Fernandaen_US
dc.contributor.authorDíaz, Luz Alexandraen_US
dc.contributor.authorCabrera-Caso, Victoren_US
dc.contributor.authorCondori-Merma, Danteen_US
dc.contributor.authorCornejo, Miguel Vizcardoen_US
dc.date.accessioned2026-02-20T09:48:00Z-
dc.date.available2026-02-20T09:48:00Z-
dc.date.issued2024en_US
dc.identifier.issn2325-8861en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/158571-
dc.description.abstractDue to its rapid propagation and enormous number of infected people, COVID-19 is the greatest pandemic in the past 100 years, with millions of deaths. The need for accessible, quick, and non-invasive diagnostic techniques persists despite a decline in cases recently. Because of this, in the current work we develop a densely connected neural network that uses heart rate data to identify between patients with COVID and healthy individuals. The Stanford University database was used, which underwent a feature extraction and the usage of approximation entropy. With an accuracy of 93% and an AUC of 0.956, the results demonstrated to be more than good at categorization, supporting the usefulness of this approach for the accurate identification of COVID cases.en_US
dc.languageengen_US
dc.relation.ispartofComputers in Cardiologyen_US
dc.sourceComputing in Cardiology[ISSN 2325-8861],v. 51, (Enero 2024)en_US
dc.subject3314 Tecnología médicaen_US
dc.titleAnalysis of COVID Patients Employing Approximate Entropy and Deep Learning for Classification and Early Diagnosisen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference51st International Computing in Cardiology, CinC 2024en_US
dc.identifier.doi10.22489/CinC.2024.173en_US
dc.identifier.scopus105028368416-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57222005271-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid58189068000-
dc.contributor.authorscopusid58147880900-
dc.contributor.authorscopusid58189751900-
dc.contributor.authorscopusid57207622703-
dc.contributor.authorscopusid60347702400-
dc.identifier.eissn2325-887X-
dc.relation.volume51en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2024en_US
dc.identifier.conferenceidevents156154-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate14-05-2024-
crisitem.event.eventsenddate16-05-2024-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Actas de congresos
Adobe PDF (262,38 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.