Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/15753
Título: Evaluation of LBP and HOG descriptors for clothing attribute description
Autores/as: Lorenzo Navarro, José Javier 
Castrillón-Santana, Modesto 
Ramón Balmaseda, Enrique José 
Freire, David 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: LBP
HOG
Clothing description
Fecha de publicación: 2014
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 1st International Workshop on Video Analytics for Audience Measurement (VAAM 2014) 
Resumen: In this work an experimental study about the capability of the LBP, HOG descriptors and color for clothing attribute classification is presented. Two different variants of the LBP descriptor are considered, the original LBP and the uniform LBP. Two classifiers, Linear SVM and Random Forest, have been included in the comparison because they have been frequently used in clothing attributes classification. The experiments are carried out with a public available dataset, the clothing attribute dataset, that has 26 attributes in total. The obtained accuracies are over 75% in most cases, reaching 80% for the necktie or sleeve length attributes.
URI: http://hdl.handle.net/10553/15753
ISBN: 978-3-319-12810-8
ISSN: 0302-9743
DOI: 10.1007/978-3-319-12811-5_4
Fuente: Video Analytics for Audience Measurement. VAAM 2014. Lecture Notes in Computer Science, v. 8811 LNCS, p. 53-65 (2014)
Colección:Capítulo de libro
miniatura
Adobe PDF (561,95 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons