Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/156556
Campo DC Valoridioma
dc.contributor.authorRodríguez Almeida, Antonio Joséen_US
dc.contributor.authorCastro Fernández, Maríaen_US
dc.contributor.authorDéniz García, Alejandroen_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorOrtega Sarmiento, Samuelen_US
dc.contributor.authorQuevedo Gutiérrez, Eduardo Gregorioen_US
dc.contributor.authorSoguero Ruiz, Cristinaen_US
dc.contributor.authorWägner, Anna Maria Claudiaen_US
dc.contributor.authorGranjad, Conceiçaoen_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.date.accessioned2026-01-30T11:01:16Z-
dc.date.available2026-01-30T11:01:16Z-
dc.date.issued2021en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/156556-
dc.description.abstractDiabetes Mellitus (DM) is a chronic disease caused by different disorders in the insulin production or use. Its prevalence has not stopped increasing during the last years, becoming a major public health concern. Thus, tools for its prediction and early diagnosis are needed. In this context, Machine Learning (ML) could be a suitable choice due to its capability of extracting useful information from medical records. However, the lack of available and reliable datasets makes this a complex task. Synthetic data generation is emerging as a solution for this issue, as it takes a real dataset as the basis to generate similar instances. In this work, a framework based on ML and synthetic data generation methods is presented to evaluate whether classification performance between presence or absence of DM could be improved. The obtained results show that ADASYN and Borderline SMOTE algorithms fairly keep the underlying structure of the original data. They also prove that the ML models trained with mixed synthetic and original data perform as well as those trained with original data.en_US
dc.languageengen_US
dc.subject32 Ciencias médicasen_US
dc.subject320502 Endocrinologíaen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherSynthetic Data Generationen_US
dc.subject.otherDiabetes Mellitusen_US
dc.subject.otherClassificationen_US
dc.titleCombining Synthetic Patient Data Generation with Machine Learning Methods for Diabetes Predictionen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceDigitalized methods and tools for industry and healthcareen_US
dc.description.lastpage4en_US
dc.description.firstpage1en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Actas de congresosen_US
dc.description.numberofpages4en_US
dc.utils.revisionen_US
dc.date.coverdate02/12/2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0001-6358-5745-
crisitem.author.orcid0000-0001-9538-4569-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-5415-3446-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameRodríguez Almeida, Antonio José-
crisitem.author.fullNameCastro Fernández, María-
crisitem.author.fullNameDéniz García, Alejandro-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento, Samuel-
crisitem.author.fullNameQuevedo Gutiérrez, Eduardo Gregorio-
crisitem.author.fullNameWägner, Anna Maria Claudia-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Actas de congresos
Adobe PDF (420,59 kB)
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.