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ABSTRACT 

Diabetes Mellitus (DM) is a chronic disease caused by different disorders in the insulin production or use. Its prevalence has 

not stopped increasing during the last years, becoming a major public health concern. Thus, tools for its prediction and early 

diagnosis are needed. In this context, Machine Learning (ML) could be a suitable choice due to its capability of extracting 

useful information from medical records. However, the lack of available and reliable datasets makes this a complex task. 

Synthetic data generation is emerging as a solution for this issue, as it takes a real dataset as the basis to generate similar 

instances. In this work, a framework based on ML and synthetic data generation methods is presented to evaluate whether 

classification performance between presence or absence of DM could be improved. The obtained results show that 

ADASYN and Borderline SMOTE algorithms fairly keep the underlying structure of the original data. They also prove that 

the ML models trained with mixed synthetic and original data perform as well as those trained with original data. 
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1. INTRODUCTION

Diabetes Mellitus (DM) is a chronic disease caused by either insufficient insulin production in the pancreas (insulin 

deficiency) and/or when the body is unable to properly use the insulin it produces (insulin resistance), leading to increased 

blood sugar. In diabetes, high blood sugar (hyperglycaemia) can lead to damage in nerves and blood vessels. According 

to the World Health Organization (WHO), in 2014, there were 422 million people with diabetes and its prevalence was, 

and still is, on the rise [1]. In 2019, over 1.5 million deaths worldwide were caused by diabetes, being a major cause of 

blindness, kidney failure, heart attack, stroke, and limb amputation [1]. Given its spread all across the world and the 

burden it poses on individuals and society alike, tools for its prediction and early diagnosis are needed. 

Artificial Intelligence (AI) is an exponentially growing field. Within AI, Machine Learning (ML) can be defined as 

computer programming using data techniques, rather than classic algorithms. This technique is based on traditional 

statistics theory to build different types of mathematical models. ML algorithms are capable of extracting information 

from rich and complex datasets. ML combined with smartphones, wearables and medical devices could be a suitable 

tool help physicians, patients or other users in the prevention and management of chronic diseases. In the case of DM, 

ML could improve risk-prediction and diagnostic models, and treatment personalization, including self-management 

of the disease [2]. Many ML techniques have been applied to the study of DM and no technique is inherently better 

than the rest, although some are more frequently used to differentiate among DM types (i.e., Type 1, Type 2 or 

Gestational DM). On the other hand, applying a well-sized and balanced dataset is essential, because training an 

algorithm with an imbalanced dataset could lead to biased models, since ML algorithms may tend to ignore the 

minority classes [3]. In the same way, missing values lower the algorithm’s ability to learn and even if it is not possible 

to avoid lack of information, arrangements could be made to facilitate the learning process [4]. 

Suitable open medical datasets are scarce and often not consistent, replicable, reliable, or big enough for study 

purposes. The main goal of this work is to evaluate if the application of data balancing and data augmentation methods, 

combined with ML algorithms, could lead to a more accurate DM prediction. Therefore, this work is presented as a 

preliminary approximation to a possible solution to this issue. A framework based on synthetic data generation and 

evaluation has been developed to classify between presence or absence of DM. The synthetic data generation was 

performed using different, validated methods for imputation, data balancing and data augmentation. This work intends 

to investigate if the methods do not significantly change the underlying structure of the original dataset, and to 

investigate whether the classification performance is not worsened by the use of synthetic data.  

2. MATERIALS AND METHODS

2.1 PIMA Indians Diabetes database 

The Pima Indians of Arizona, U.S.A, had the highest prevalence of DM worldwide [5]. The National Institute of 

Diabetes and Digestive and Kidney Diseases recorded data for females of Pima Indian heritage who were at least 21 

years old [5]. In particular, the dataset was composed of a total of 768 individuals, 268 with DM and 500 without. The 

goal of this study is to predict whether or not a patient has diabetes based on eight independent variables: the number 

of pregnancies the patient has had; the body mass index (𝑤𝑒𝑖𝑔ℎ𝑡[𝑘𝑔]/(ℎ𝑒𝑖𝑔ℎ𝑡[𝑚])2); the 2-hours plasma glucose
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concentration in an oral glucose tolerance test; the diastolic blood pressure (mm Hg); the triceps skin fold thickness 

(mm); the 2-Hour serum insulin (mu U/ml); the diabetes pedigree function and the age (years). This dataset can be 

considered as a “worst case” scenario since there are features, such as insulin, whose values are missing in half of the 

whole dataset instances. Besides, it has been assumed that zero insulin values mean missing data, when, in reality, 

insulin dose can be zero. However, this information is not provided in the dataset. 

2.2 Synthetic data generation techniques 

Two different synthetic data generation techniques were used. Firstly, algorithms designed to balance imbalanced 

datasets were applied. Once the proportion of controls and cases was well-adjusted, algorithms to augment data from 

the whole dataset were used. We expected that data balance would avoid introducing bias in the model due to the 

existence of a majority class, while data augmentation would improve the generalization of the model.   

2.2.1 Data Balancing  

To balance this dataset, two widely used algorithms were applied [6]: Synthetic Minority Over-sampling Technique 

(SMOTE)  and ADAptive SYNthetic Sampling (ADASYN). The basis of the SMOTE algorithm is to oversample the 

minority class introducing random samples along the line segments joining any (or all) k minority sample neighbours. 

Apart from the original SMOTE implementation, three additional variants of the original algorithm were tested. The 

K-Means SMOTE applies a K-Means clustering before oversampling with SMOTE [6]. The SVM (Support Vector 

Machine) SMOTE detects samples to use as a reference through a SVM classifier prior to oversampling [6]. The 

Borderline SMOTE (BS) detects the borderline samples of each class and only the minority samples near the 

borderline are oversampled [6]. The ADASYN algorithm can be considered as an improvement of the SMOTE 

algorithm. Whereas the SMOTE algorithm generates arbitrary minority examples, ADASYN uses weighted 

distributions for different minority class samples. This algorithm focuses on generating more samples from the actual 

samples that are the most difficult to learn [6].   

2.2.2 Data Augmentation  

As aforementioned, after data balance is performed, data augmentation is assessed. To that end, two different 

algorithms have been implemented: Gaussian Copulas (GCs) [7] and Conditional Tabular Generative Adversarial 

Networks (CTGANs) [8]. GCs are constructed from a multivariate normal distribution, being capable of reproducing 

a large variety of multivariate distributions. Generative Adversarial Networks (GANs) have been extensively used 

lately, and many variants have been developed with different purposes. In this case, since this dataset can be considered 

tabular data, CTGANs have been selected. The GANs are Deep Learning (DL) models based on a discriminative 

model that learns to determine if a sample belongs to the data distribution or to the model distribution. The generative 

model creates data that are evaluated by the discriminative model, so both improve their methods until generated data 

and real data are indistinguishable. CTGANs are GANs specifically designed to model tabular data, prepared to 

overcome the non-Gaussian and multimodal distributions of imbalanced datasets. 

2.3 Machine learning techniques 

For the classification task, four different supervised classifiers were used for performance comparison, and to test if 

mixing the synthetic data with the real data for training, worsened, improved, or kept such performances. The chosen 

classifiers were SVM [9], Random Forest (RF) [9], K-Nearest Neighbours (KNN) [9] and XGBoost (XGB) which is 

a gradient boosting algorithm [10]. A grid search was performed for all cases to find the optimal hyperparameters 

among those considered most relevant for each model.  

2.4 Evaluation metrics 

One of the main objectives of this work is to determine if the different synthetic data generation algorithms faithfully 

replicate the original dataset, or if, in contrast, the underlying structure of the data is totally or partially lost. Based on 

the literature regarding generation and evaluation of synthetic medical data, three different metrics have been used: 1) 

Pairwise Correlation Difference (PCD) describes how much correlation the synthetic data has been able to capture 

from the original data and is computed at the dataset level. The smaller the PCD, the closer the synthetic data are to 

real data in terms of linear correlations across the variables [11]; 2) Maximum Mean Discrepancy (MMD) indicates 

how well the model captures the distribution of the real data at dataset level. Lower MMD indicates higher similarity 

distribution. A value equal to zero means that the distribution was perfectly captured. It has been proven to be effective 

evaluating GANs [12]; 3) Kullback-Leibler Divergence (KLD) measures how different a probability distribution is 

from the original one using logarithmic functions. This parameter is computed at feature level, not at dataset level. 

Following, the KLD of every feature was added so a final single number was obtained. A value equal to zero means 

that distributions contain the same information. The higher the value, the worse the similarity between datasets. It is 

worth noticing that KLD does not measure dependencies among variables [11]. Since KLD matrices must have the 

same dimensions to be comparable, this metric is not used to evaluate balancing algorithms. Classification 

performance was evaluated in terms of accuracy (ACC), Area Under the Curve (AUC), and F1-score. Notice that 

accuracy could be high when training with the original dataset since this dataset has not been balanced. This result 

does not mean that the model learned from data is better than others, but means that it is biased by the majority class. 

For this reason, F1-score should be the main parameter to consider when evaluating these models.  

 



2.5 Proposed processing framework 

Figure 1 shows the data processing framework proposed in this work. This framework has been entirely developed in 

Python programming language, using sklearn, imblearn and sdv libraries for the ML and synthetic data 

generation processing. The first step is a manual cleaning of the raw dataset based on the prior knowledge of the 

physiological variables. With this, mistakes on the data acquisition and illogical values are removed. Then, the dataset 

is partitioned into training (80%) and test (20%) sets. Afterwards, missing data of both subsets are imputed using a 

KNN imputation algorithm. The test set was imputed using train data instances [24]. From here, the processing 

framework is only applied on the training set, while the test set is used on the final step. Once imputation is performed, 

data balancing algorithms are applied, so that the problems associated to model training with an imbalanced dataset 

are removed. At this point, the first evaluation of the synthetic data is assessed. Only the algorithms that show the best 

results in terms of statistical data similarity are passed through the data augmentation algorithms. In this step, data are 

augmented following two paths: a) with the entire balanced dataset, and b) cases and controls separately. Once 

augmented, synthetic data are again evaluated to check which algorithm replicates the underlying structure of the 

previous dataset in a more reliable way. Both the training and the test sets were separately normalized by centring and 

scaling the samples with the mean and standard deviation of each feature. Notice that the reference dataset in this 

evaluation will vary depending on the balance algorithm previously used. The final step consists of training the ML 

models (including their optimization following a 10-fold cross validation approach) with the processed dataset and 

validating them with the test set, evaluating and analysing the obtained results. 

 
 Figure 1. Proposed processing framework.   

3. EXPERIMENTAL RESULTS 

3.1 Synthetic data generation results 

Depending on the data balancing algorithm used, different dataset dimension datasets were generated. The output of 

the ADASYN algorithm were 809 instances, while BS algorithm output were 800 instances. In the data augmentation 

step, CTGAN and GC always duplicated the instances (ending with 1618 and 1600, depending on the previous 

balancing algorithm). Hence, classifiers were trained with ~1600 instances, whereas without synthetic data, classifier 

were trained with 611 instances.  

Figure 2.a illustrates the metrics that describe the quality of the data generated after balancing algorithms were applied 

to the imputed dataset. Notice that, when data balance algorithms are applied, it is usual to partially lose the underlying 

structure of the data. The Pearson correlation hardly changes, which means that the linear correlations have been fairly 

maintained. The balancing algorithms that best fit the original data were ADASYN and the BS, even though BS shows 

a slightly high value of PCD. Their output were the ones passed through the GC and the CTGAN algorithms and taken 

as the reference datasets to study the different synthetic data generation metrics. When the dataset is partitioned in 

control and cases after data balance, this is indicated with the word “Sep”.  

  
(a) (b) 

 Figure 2. Results of the different metrics obtained for data balance (a) and data augmentation (b) methods. 

Figure 2.b shows the results after data augmentation was performed. According to the PCD, the GC algorithm always 

preserves the linear correlations much better than the CTGAN. Regarding the rest of parameters, one algorithm does 



not clearly overcome the other. Based on these three parameters, the methods that, in general, preserve this diabetes 

dataset structure best are ADASYN+GC, ADASYN+Sep+GC and BS+Sep+GC.  

3.2 Classification results  

Table 1 shows the classification performance for the eight different combined methods and the four classifiers. The 

models trained with the original dataset without the presence of synthetic data are referred to as “reference”. In general, 

the performance of the classifiers is similar regarding to the reference results. F1-Score reveals that training the 

classifiers using balanced and augmented synthetic data provides higher performance than using the original 

unbalanced dataset. In ACC and AUC metrics, the results are fairly similar to the reference, except for the SVM using 

BS+GC that improves such reference results. It can be noticed that RF and XGB classifiers achieve the highest 

performance.  

Table 1. Classification results obtained using the four different classifiers.  

 ACC AUC F1-Score 

 SVM RF XGB KNN SVM RF XGB KNN SVM RF XGB KNN 

Reference 0.77 0.82 0.83 0.80 0.87 0.90 0.90 0.88 0.64 0.72 0.72 0.69 

ADASYN+CTGAN 0.75 0.72 0.75 0.67 0.86 0.85 0.88 0.82 0.72 0.66 0.71 0.64 

ADASYN+GC 0.76 0.77 0.72 0.69 0.86 0.86 0.80 0.82 0.71 0.72 0.65 0.65 

BS+CTGAN 0.75 0.75 0.76 0.72 0.83 0.85 0.84 0.85 0.70 0.67 0.69 0.67 

BS+GC 0.79 0.75 0.75 0.74 0.88 0.88 0.87 0.87 0.75 0.70 0.68 0.69 

ADASYN+Sep+CTGAN 0.68 0.71 0.69 0.66 0.75 0.77 0.70 0.68 0.57 0.62 0.55 0.56 

ADASYN+Sep+GC 0.78 0.78 0.74 0.67 0.85 0.87 0.86 0.80 0.74 0.73 0.71 0.63 

BS+Sep+CTGAN 0.73 0.76 0.66 0.65 0.78 0.81 0.72 0.72 0.64 0.66 0.52 0.60 

BS+Sep+GC 0.77 0.75 0.78 0.69 0.85 0.87 0.88 0.80 0.73 0.69 0.73 0.65 

4. CONCLUSIONS 

In this work, it has been demonstrated that a framework that combines synthetic data generation with ML classification 

applied to a diabetes dataset does not worsen the classification performances, improving them in some cases in terms of 

F1-score metric. Furthermore, the proposed framework could offer robustness against overfitting and better 

generalization, since the models are trained using higher number of samples that reliably represents the original dataset. 

From the obtained results, it is clear that there is not any synthetic data generation algorithm that perfectly suits all 

classifiers. In general, better metrics in the synthetic data similarity implies better classification performance. The fact 

that this framework works well with this limited dataset is promising. In this sense, further work will continue with other 

datasets to validate the proposed approach to improve classification or apply it on other tasks such as regression or 

clustering.  
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