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ABSTRACT

Diabetes Mellitus (DM) is a chronic disease caused by different disorders in the insulin production or use. Its prevalence has
not stopped increasing during the last years, becoming a major public health concern. Thus, tools for its prediction and early
diagnosis are needed. In this context, Machine Learning (ML) could be a suitable choice due to its capability of extracting
useful information from medical records. However, the lack of available and reliable datasets makes this a complex task.
Synthetic data generation is emerging as a solution for this issue, as it takes a real dataset as the basis to generate similar
instances. In this work, a framework based on ML and synthetic data generation methods is presented to evaluate whether
classification performance between presence or absence of DM could be improved. The obtained results show that
ADASYN and Borderline SMOTE algorithms fairly keep the underlying structure of the original data. They also prove that
the ML models trained with mixed synthetic and original data perform as well as those trained with original data.
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1. INTRODUCTION

Diabetes Mellitus (DM) is a chronic disease caused by either insufficient insulin production in the pancreas (insulin
deficiency) and/or when the body is unable to properly use the insulin it produces (insulin resistance), leading to increased
blood sugar. In diabetes, high blood sugar (hyperglycaemia) can lead to damage in nerves and blood vessels. According
to the World Health Organization (WHO), in 2014, there were 422 million people with diabetes and its prevalence was,
and still is, on the rise [1]. In 2019, over 1.5 million deaths worldwide were caused by diabetes, being a major cause of
blindness, kidney failure, heart attack, stroke, and limb amputation [1]. Given its spread all across the world and the
burden it poses on individuals and society alike, tools for its prediction and early diagnosis are needed.

Artificial Intelligence (Al) is an exponentially growing field. Within Al, Machine Learning (ML) can be defined as
computer programming using data techniques, rather than classic algorithms. This technique is based on traditional
statistics theory to build different types of mathematical models. ML algorithms are capable of extracting information
from rich and complex datasets. ML combined with smartphones, wearables and medical devices could be a suitable
tool help physicians, patients or other users in the prevention and management of chronic diseases. In the case of DM,
ML could improve risk-prediction and diagnostic models, and treatment personalization, including self-management
of the disease [2]. Many ML techniques have been applied to the study of DM and no technique is inherently better
than the rest, although some are more frequently used to differentiate among DM types (i.e., Type 1, Type 2 or
Gestational DM). On the other hand, applying a well-sized and balanced dataset is essential, because training an
algorithm with an imbalanced dataset could lead to biased models, since ML algorithms may tend to ignore the
minority classes [3]. In the same way, missing values lower the algorithm’s ability to learn and even if it is not possible
to avoid lack of information, arrangements could be made to facilitate the learning process [4].

Suitable open medical datasets are scarce and often not consistent, replicable, reliable, or big enough for study
purposes. The main goal of this work is to evaluate if the application of data balancing and data augmentation methods,
combined with ML algorithms, could lead to a more accurate DM prediction. Therefore, this work is presented as a
preliminary approximation to a possible solution to this issue. A framework based on synthetic data generation and
evaluation has been developed to classify between presence or absence of DM. The synthetic data generation was
performed using different, validated methods for imputation, data balancing and data augmentation. This work intends
to investigate if the methods do not significantly change the underlying structure of the original dataset, and to
investigate whether the classification performance is not worsened by the use of synthetic data.

2. MATERIALS AND METHODS
2.1 PIMA Indians Diabetes database

The Pima Indians of Arizona, U.S.A, had the highest prevalence of DM worldwide [5]. The National Institute of
Diabetes and Digestive and Kidney Diseases recorded data for females of Pima Indian heritage who were at least 21
years old [5]. In particular, the dataset was composed of a total of 768 individuals, 268 with DM and 500 without. The
goal of this study is to predict whether or not a patient has diabetes based on eight independent variables: the number
of pregnancies the patient has had; the body mass index (weight[kg]/(height[m])?); the 2-hours plasma glucose
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concentration in an oral glucose tolerance test; the diastolic blood pressure (mm Hg); the triceps skin fold thickness
(mm); the 2-Hour serum insulin (mu U/ml); the diabetes pedigree function and the age (years). This dataset can be
considered as a “worst case” scenario since there are features, such as insulin, whose values are missing in half of the
whole dataset instances. Besides, it has been assumed that zero insulin values mean missing data, when, in reality,
insulin dose can be zero. However, this information is not provided in the dataset.

2.2 Synthetic data generation techniques

Two different synthetic data generation techniques were used. Firstly, algorithms designed to balance imbalanced
datasets were applied. Once the proportion of controls and cases was well-adjusted, algorithms to augment data from
the whole dataset were used. We expected that data balance would avoid introducing bias in the model due to the
existence of a majority class, while data augmentation would improve the generalization of the model.

2.2.1 DataBalancing

To balance this dataset, two widely used algorithms were applied [6]: Synthetic Minority Over-sampling Technique
(SMOTE) and ADAptive SY Nthetic Sampling (ADASYN). The basis of the SMOTE algorithm is to oversample the
minority class introducing random samples along the line segments joining any (or all) k minority sample neighbours.
Apart from the original SMOTE implementation, three additional variants of the original algorithm were tested. The
K-Means SMOTE applies a K-Means clustering before oversampling with SMOTE [6]. The SVM (Support Vector
Machine) SMOTE detects samples to use as a reference through a SVM classifier prior to oversampling [6]. The
Borderline SMOTE (BS) detects the borderline samples of each class and only the minority samples near the
borderline are oversampled [6]. The ADASYN algorithm can be considered as an improvement of the SMOTE
algorithm. Whereas the SMOTE algorithm generates arbitrary minority examples, ADASYN uses weighted
distributions for different minority class samples. This algorithm focuses on generating more samples from the actual
samples that are the most difficult to learn [6].

2.2.2  Data Augmentation

As aforementioned, after data balance is performed, data augmentation is assessed. To that end, two different
algorithms have been implemented: Gaussian Copulas (GCs) [7] and Conditional Tabular Generative Adversarial
Networks (CTGANS) [8]. GCs are constructed from a multivariate normal distribution, being capable of reproducing
a large variety of multivariate distributions. Generative Adversarial Networks (GANS) have been extensively used
lately, and many variants have been developed with different purposes. In this case, since this dataset can be considered
tabular data, CTGANSs have been selected. The GANs are Deep Learning (DL) models based on a discriminative
model that learns to determine if a sample belongs to the data distribution or to the model distribution. The generative
model creates data that are evaluated by the discriminative model, so both improve their methods until generated data
and real data are indistinguishable. CTGANs are GANs specifically designed to model tabular data, prepared to
overcome the non-Gaussian and multimodal distributions of imbalanced datasets.

2.3 Machine learning techniques

For the classification task, four different supervised classifiers were used for performance comparison, and to test if
mixing the synthetic data with the real data for training, worsened, improved, or kept such performances. The chosen
classifiers were SVM [9], Random Forest (RF) [9], K-Nearest Neighbours (KNN) [9] and XGBoost (XGB) which is
a gradient boosting algorithm [10]. A grid search was performed for all cases to find the optimal hyperparameters
among those considered most relevant for each model.

2.4 Evaluation metrics

One of the main objectives of this work is to determine if the different synthetic data generation algorithms faithfully
replicate the original dataset, or if, in contrast, the underlying structure of the data is totally or partially lost. Based on
the literature regarding generation and evaluation of synthetic medical data, three different metrics have been used: 1)
Pairwise Correlation Difference (PCD) describes how much correlation the synthetic data has been able to capture
from the original data and is computed at the dataset level. The smaller the PCD, the closer the synthetic data are to
real data in terms of linear correlations across the variables [11]; 2) Maximum Mean Discrepancy (MMD) indicates
how well the model captures the distribution of the real data at dataset level. Lower MMD indicates higher similarity
distribution. A value equal to zero means that the distribution was perfectly captured. It has been proven to be effective
evaluating GANs [12]; 3) Kullback-Leibler Divergence (KLD) measures how different a probability distribution is
from the original one using logarithmic functions. This parameter is computed at feature level, not at dataset level.
Following, the KLD of every feature was added so a final single number was obtained. A value equal to zero means
that distributions contain the same information. The higher the value, the worse the similarity between datasets. It is
worth noticing that KLD does not measure dependencies among variables [11]. Since KLD matrices must have the
same dimensions to be comparable, this metric is not used to evaluate balancing algorithms. Classification
performance was evaluated in terms of accuracy (ACC), Area Under the Curve (AUC), and F1-score. Notice that
accuracy could be high when training with the original dataset since this dataset has not been balanced. This result
does not mean that the model learned from data is better than others, but means that it is biased by the majority class.
For this reason, F1-score should be the main parameter to consider when evaluating these models.



2.5 Proposed processing framework

Figure 1 shows the data processing framework proposed in this work. This framework has been entirely developed in
Python programming language, using sklearn, imblearn and sdv libraries for the ML and synthetic data
generation processing. The first step is a manual cleaning of the raw dataset based on the prior knowledge of the
physiological variables. With this, mistakes on the data acquisition and illogical values are removed. Then, the dataset
is partitioned into training (80%) and test (20%) sets. Afterwards, missing data of both subsets are imputed using a
KNN imputation algorithm. The test set was imputed using train data instances [24]. From here, the processing
framework is only applied on the training set, while the test set is used on the final step. Once imputation is performed,
data balancing algorithms are applied, so that the problems associated to model training with an imbalanced dataset
are removed. At this point, the first evaluation of the synthetic data is assessed. Only the algorithms that show the best
results in terms of statistical data similarity are passed through the data augmentation algorithms. In this step, data are
augmented following two paths: a) with the entire balanced dataset, and b) cases and controls separately. Once
augmented, synthetic data are again evaluated to check which algorithm replicates the underlying structure of the
previous dataset in a more reliable way. Both the training and the test sets were separately normalized by centring and
scaling the samples with the mean and standard deviation of each feature. Notice that the reference dataset in this
evaluation will vary depending on the balance algorithm previously used. The final step consists of training the ML
models (including their optimization following a 10-fold cross validation approach) with the processed dataset and
validating them with the test set, evaluating and analysing the obtained results.
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Figure 1. Proposed processing framework.

3. EXPERIMENTAL RESULTS
3.1 Synthetic data generation results

Depending on the data balancing algorithm used, different dataset dimension datasets were generated. The output of
the ADASY N algorithm were 809 instances, while BS algorithm output were 800 instances. In the data augmentation
step, CTGAN and GC always duplicated the instances (ending with 1618 and 1600, depending on the previous
balancing algorithm). Hence, classifiers were trained with ~1600 instances, whereas without synthetic data, classifier
were trained with 611 instances.

Figure 2.a illustrates the metrics that describe the quality of the data generated after balancing algorithms were applied
to the imputed dataset. Notice that, when data balance algorithms are applied, it is usual to partially lose the underlying
structure of the data. The Pearson correlation hardly changes, which means that the linear correlations have been fairly
maintained. The balancing algorithms that best fit the original data were ADASY N and the BS, even though BS shows
a slightly high value of PCD. Their output were the ones passed through the GC and the CTGAN algorithms and taken
as the reference datasets to study the different synthetic data generation metrics. When the dataset is partitioned in
control and cases after data balance, this is indicated with the word “Sep”.
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Figure 2. Results of the different metrics obtained for data balance (a) and data augmentation (b) methods.

Figure 2.b shows the results after data augmentation was performed. According to the PCD, the GC algorithm always
preserves the linear correlations much better than the CTGAN. Regarding the rest of parameters, one algorithm does



not clearly overcome the other. Based on these three parameters, the methods that, in general, preserve this diabetes
dataset structure best are ADASYN+GC, ADASYN+Sep+GC and BS+Sep+GC.

3.2 Classification results

Table 1 shows the classification performance for the eight different combined methods and the four classifiers. The
models trained with the original dataset without the presence of synthetic data are referred to as “reference”. In general,
the performance of the classifiers is similar regarding to the reference results. F1-Score reveals that training the
classifiers using balanced and augmented synthetic data provides higher performance than using the original
unbalanced dataset. In ACC and AUC metrics, the results are fairly similar to the reference, except for the SVM using
BS+GC that improves such reference results. It can be noticed that RF and XGB classifiers achieve the highest
performance.

Table 1. Classification results obtained using the four different classifiers.

ACC AUC F1-Score

SVM RF XGB KNN SVM RF XGB KNN SVM RF XGB KNN
Reference 0.77 0.82 0.83 0.80 0.87 0.90 0.90 0.88 0.64 0.72 0.72 0.69
IADASYN+CTGAN 0.75 0.72 0.75 0.67 0.86 0.85 0.88 0.82 0.72 0.66 0.71 0.64
IADASYN+GC 0.76 0.77 0.72 0.69 0.86 0.86 0.80 0.82 0.71 0.72 0.65 0.65
BS+CTGAN 0.75 0.75 0.76 0.72 0.83 0.85 0.84 0.85 0.70 0.67 0.69 0.67
BS+GC 0.79 0.75 0.75 0.74 0.88 0.88 0.87 0.87 0.75 0.70 0.68 0.69
IADASYN+Sep+CTGAN| 0.68 0.71 0.69 0.66 0.75 0.77 0.70 0.68 0.57 0.62 0.55 0.56
IADASYN+Sep+GC 0.78 0.78 0.74 0.67 0.85 0.87 0.86 0.80 0.74 0.73 0.71 0.63
BS+Sep+CTGAN 0.73 0.76 0.66 0.65 0.78 0.81 0.72 0.72 0.64 0.66 0.52 0.60
BS+Sep+GC 0.77 0.75 0.78 0.69 0.85 0.87 0.88 0.80 0.73 0.69 0.73 0.65

4. CONCLUSIONS

In this work, it has been demonstrated that a framework that combines synthetic data generation with ML classification
applied to a diabetes dataset does not worsen the classification performances, improving them in some cases in terms of
Fl-score metric. Furthermore, the proposed framework could offer robustness against overfitting and better
generalization, since the models are trained using higher number of samples that reliably represents the original dataset.
From the obtained results, it is clear that there is not any synthetic data generation algorithm that perfectly suits all
classifiers. In general, better metrics in the synthetic data similarity implies better classification performance. The fact
that this framework works well with this limited dataset is promising. In this sense, further work will continue with other
datasets to validate the proposed approach to improve classification or apply it on other tasks such as regression or
clustering.
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