Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/156307
| Campo DC | Valor | idioma |
|---|---|---|
| dc.contributor.author | Carta González, José Antonio | - |
| dc.contributor.author | Cabrera Santana, Pedro Jesús | - |
| dc.date.accessioned | 2026-01-28T15:16:35Z | - |
| dc.date.available | 2026-01-28T15:16:35Z | - |
| dc.date.issued | 2026 | - |
| dc.identifier.issn | 0960-1481 | - |
| dc.identifier.other | Scopus | - |
| dc.identifier.uri | https://accedacris.ulpgc.es/jspui/handle/10553/156307 | - |
| dc.description.abstract | This paper proposes the use of measure-correlate-predict (MCP) methods based on supervised machine learning (ML) techniques to transform reanalysis data from ERA5 and MERRA2, aiming to improve the long-term estimation of wind speed and direction at locations with limited on-site measurements. The study analyzes modelsthat directly estimate the target variables—wind speed and direction—as well as two-stage models that first estimate the Cartesian components of wind velocity and subsequently transform them into polar coordinates.As a case study, hourly mean wind data recorded between 2001 and 2023 at 10 m above ground level are used. The data were collected from an anemometric station located on the island of Gran Canaria (Canary Archipelago, Spain). Key findings include the following: (a) Reanalysis data underestimate actual wind speeds and fail to adequately represent the mean wind direction; (b) although reanalysis data poorly represent the daily wind speed profile, the MCP model significantly corrects this, achieving a Pearson correlation of 0.994; (c) the MCP method minimizes the differences between observed and estimated values (7.2 m/s vs. 7.13 m/s, and 4.49◦ vs. 4.50◦, respectively); (d) the combination of ERA5 and MERRA2 consistently yields the lowest estimation errors, regardless of model type; (e) artificial neural networks outperform other ML techniques in all scenarios; and (f) the proposed method reduces the mean relative error in wind power density estimation to 13.89 %, compared to 43 % and 63.1 % using MERRA2 and ERA5 alone, respectively. | - |
| dc.language | eng | - |
| dc.relation | RESMAC project (1/ MAC/2/2.2/0011), INTERREG MAC 2021–2027 programme | - |
| dc.relation.ispartof | Renewable Energy | - |
| dc.source | Renewable Energy [ISSN 0960-1481], v. 261, (Enero 2026) | - |
| dc.subject | 3313 Tecnología e ingeniería mecánicas | - |
| dc.subject.other | Measure-correlate-predict method | - |
| dc.subject.other | Machine learning techniques | - |
| dc.subject.other | Reanalysis data | - |
| dc.subject.other | Wind direction | - |
| dc.subject.other | Wind speed | - |
| dc.subject.other | Wind power density | - |
| dc.title | Transformation of reanalysis data for improved long-term estimation of wind speed and direction at a target site | - |
| dc.type | info:eu-repo/semantics/article | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1016/j.renene.2026.125280 | - |
| dc.identifier.scopus | 105028365514 | - |
| dc.contributor.orcid | NO DATA | - |
| dc.contributor.orcid | 0000-0001-9707-6375 | - |
| dc.contributor.authorscopusid | 7003652043 | - |
| dc.contributor.authorscopusid | 56331565000 | - |
| dc.identifier.eissn | 1879-0682 | - |
| dc.relation.volume | 261 | - |
| dc.investigacion | Ingeniería y Arquitectura | - |
| dc.type2 | Artículo | - |
| dc.description.numberofpages | 23 | - |
| dc.utils.revision | Sí | - |
| dc.date.coverdate | 2026 | - |
| dc.identifier.ulpgc | Sí | - |
| dc.contributor.buulpgc | BU-ING | - |
| dc.description.sjr | 2,08 | - |
| dc.description.jcr | 9,1 | - |
| dc.description.sjrq | Q1 | - |
| dc.description.jcrq | Q1 | - |
| dc.description.scie | SCIE | - |
| dc.description.miaricds | 11,0 | - |
| item.grantfulltext | open | - |
| item.fulltext | Con texto completo | - |
| crisitem.author.dept | GIR Group for the Research on Renewable Energy Systems | - |
| crisitem.author.dept | Departamento de Ingeniería Mecánica | - |
| crisitem.author.dept | GIR Group for the Research on Renewable Energy Systems | - |
| crisitem.author.dept | Departamento de Ingeniería Mecánica | - |
| crisitem.author.orcid | 0000-0003-1379-0075 | - |
| crisitem.author.orcid | 0000-0001-9707-6375 | - |
| crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
| crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
| crisitem.author.fullName | Carta González, José Antonio | - |
| crisitem.author.fullName | Cabrera Santana, Pedro Jesús | - |
| Colección: | Artículos | |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.