Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/156307
Campo DC Valoridioma
dc.contributor.authorCarta González, José Antonio-
dc.contributor.authorCabrera Santana, Pedro Jesús-
dc.date.accessioned2026-01-28T15:16:35Z-
dc.date.available2026-01-28T15:16:35Z-
dc.date.issued2026-
dc.identifier.issn0960-1481-
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/156307-
dc.description.abstractThis paper proposes the use of measure-correlate-predict (MCP) methods based on supervised machine learning (ML) techniques to transform reanalysis data from ERA5 and MERRA2, aiming to improve the long-term estimation of wind speed and direction at locations with limited on-site measurements. The study analyzes modelsthat directly estimate the target variables—wind speed and direction—as well as two-stage models that first estimate the Cartesian components of wind velocity and subsequently transform them into polar coordinates.As a case study, hourly mean wind data recorded between 2001 and 2023 at 10 m above ground level are used. The data were collected from an anemometric station located on the island of Gran Canaria (Canary Archipelago, Spain). Key findings include the following: (a) Reanalysis data underestimate actual wind speeds and fail to adequately represent the mean wind direction; (b) although reanalysis data poorly represent the daily wind speed profile, the MCP model significantly corrects this, achieving a Pearson correlation of 0.994; (c) the MCP method minimizes the differences between observed and estimated values (7.2 m/s vs. 7.13 m/s, and 4.49◦ vs. 4.50◦, respectively); (d) the combination of ERA5 and MERRA2 consistently yields the lowest estimation errors, regardless of model type; (e) artificial neural networks outperform other ML techniques in all scenarios; and (f) the proposed method reduces the mean relative error in wind power density estimation to 13.89 %, compared to 43 % and 63.1 % using MERRA2 and ERA5 alone, respectively.-
dc.languageeng-
dc.relationRESMAC project (1/ MAC/2/2.2/0011), INTERREG MAC 2021–2027 programme-
dc.relation.ispartofRenewable Energy-
dc.sourceRenewable Energy [ISSN 0960-1481], v. 261, (Enero 2026)-
dc.subject3313 Tecnología e ingeniería mecánicas-
dc.subject.otherMeasure-correlate-predict method-
dc.subject.otherMachine learning techniques-
dc.subject.otherReanalysis data-
dc.subject.otherWind direction-
dc.subject.otherWind speed-
dc.subject.otherWind power density-
dc.titleTransformation of reanalysis data for improved long-term estimation of wind speed and direction at a target site-
dc.typeinfo:eu-repo/semantics/article-
dc.typeArticle-
dc.identifier.doi10.1016/j.renene.2026.125280-
dc.identifier.scopus105028365514-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0001-9707-6375-
dc.contributor.authorscopusid7003652043-
dc.contributor.authorscopusid56331565000-
dc.identifier.eissn1879-0682-
dc.relation.volume261-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.description.numberofpages23-
dc.utils.revision-
dc.date.coverdate2026-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-ING-
dc.description.sjr2,08-
dc.description.jcr9,1-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-1379-0075-
crisitem.author.orcid0000-0001-9707-6375-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameCarta González, José Antonio-
crisitem.author.fullNameCabrera Santana, Pedro Jesús-
Colección:Artículos
Adobe PDF (16,67 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.