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A B S T R A C T

This paper proposes the use of measure-correlate-predict (MCP) methods based on supervised machine learning 
(ML) techniques to transform reanalysis data from ERA5 and MERRA2, aiming to improve the long-term esti
mation of wind speed and direction at locations with limited on-site measurements. The study analyzes models 
that directly estimate the target variables—wind speed and direction—as well as two-stage models that first 
estimate the Cartesian components of wind velocity and subsequently transform them into polar coordinates.

As a case study, hourly mean wind data recorded between 2001 and 2023 at 10 m above ground level are used. 
The data were collected from an anemometric station located on the island of Gran Canaria (Canary Archipelago, 
Spain).

Key findings include the following: (a) Reanalysis data underestimate actual wind speeds and fail to 
adequately represent the mean wind direction; (b) although reanalysis data poorly represent the daily wind 
speed profile, the MCP model significantly corrects this, achieving a Pearson correlation of 0.994; (c) the MCP 
method minimizes the differences between observed and estimated values (7.2 m/s vs. 7.13 m/s, and 4.49◦ vs. 
4.50◦, respectively); (d) the combination of ERA5 and MERRA2 consistently yields the lowest estimation errors, 
regardless of model type; (e) artificial neural networks outperform other ML techniques in all scenarios; and (f) 
the proposed method reduces the mean relative error in wind power density estimation to 13.89 %, compared to 
43 % and 63.1 % using MERRA2 and ERA5 alone, respectively.

1. Introduction

The accurate estimation of wind resource characteristics at a target 
site (TS) is essential for energy system planning and the development of 
economically viable wind farms [1]. When conducting feasibility studies 
for the installation of a wind farm at a target site, it is necessary to es
timate the energy that will be generated by the wind farm over the 
course of its lifetime [2]. According to Landberg et al. [3], a minimum of 
5–10 years of data is required to assess the long-term wind resource. 
Hiester and Pennell [4] emphasize that at least 10 years of measure
ments are essential to accurately estimate mean wind power at a target 
site.

Several authors have highlighted that long observational records are 
required to characterize the full temporal variability of the wind 
resource. Burton et al. [5] stress that multi-year and even multi-decadal 
datasets are desirable for defining a reliable wind climate. Baker et al. 
[6] quantified annual and seasonal variations in mean wind speed and 
wind turbine energy production using long-term records. Klink [7] 

analyzed 22–35-year series at several stations in Minnesota and showed 
that trends and interannual variability can markedly affect the distri
bution of wind speeds. Yet, in practice, such long-term datasets are 
rarely available at target sites, where typically only short-term mea
surement campaigns—often limited to one year or even a few month
s—are feasible due to time and cost constraints.

In general, at least one year of data is required to capture the sea
sonal behaviour of wind. In Brazil, as noted by Miguel et al. [8], the 
extension of measurement campaigns from 24 to 36 months in 2017 
reflects a stronger commitment to capturing wind variability and 
improving resource assessment accuracy.

The availability of long-term data series is often limited by the high 
cost of resource measurement campaigns and the urgency to obtain this 
information within a short timeframe to initiate the necessary proced
ures for the installation and commissioning of the wind farm. To address 
this challenge, both the scientific literature and the wind industry have 
adopted measure-correlate-predict (MCP) methods [9]. To estimate the 
long-term wind resource at a target site, MCP methods use the 
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short-term data that is available for that site in combination with 
long-term data obtained from nearby meteorological stations.

In situations where suitable reference meteorological stations are 
unavailable, several studies have examined the direct use of reanalysis 
products for wind-resource assessment. Olauson [10] showed that ERA5 
provides substantially improved temporal consistency and reduced bias 
compared to earlier reanalyses, making it a strong candidate for 
long-term wind modelling. Rabbani and Zeeshan [11]evaluated 
MERRA-2 for wind-energy applications in Pakistan and found that, 
although regional patterns are well reproduced, local discrepancies 
persist. Pryor and Barthelmie [12] analyzed extreme wind speeds 
globally and highlighted marked regional differences in reanalysis per
formance, which are particularly relevant for wind-energy design. Cai 
and Bréon [13] a [13] ssessed wind-power potential in climate-change 
scenarios and noted that reanalysis datasets capture large-scale signals 
but may miss finer-scale features. Görmüş et al. [14] analyzed 
multi-decadal offshore wind characteristics in the Mediterranean using 
reanalysis data, demonstrating their usefulness for long-term resource 
estimation while acknowledging site-specific limitations. Climate rean
alyses combine historical measurements from various observation sys
tems with numerical prediction models to produce time series records of 
multiple climate variables on global or regional three-dimensional grids.

According to Watson [15] and Sheridan et al. [16], two of the most 
well-known global reanalyses used in renewable energy resource anal
ysis are the Modern-Era Reanalysis for Research and Applications 
(MERRA2) [17] and ERA5 [18]. MERRA2, produced by NASA's Global 
Modeling and Assimilation Office, provides hourly wind speeds at three 
heights above ground level: 2 m, 10 m, and 50 m. ERA5, a global climate 
reanalysis product developed by the European Centre for 
Medium-Range Weather Forecasts, offers hourly mean wind speeds at 
two heights above ground level: 10 m and 100 m.

Gualtieri [19] carried out a critical review of the state of the art on 
the uncertainties associated with the direct use of reanalysis data for 
wind resource assessment. The author highlights that reanalysis data 
(particularly from ERA5) are sufficiently reliable for offshore and flat 
onshore sites. However, he also indicates that at certain sites the rean
alysis data may differ significantly from the actual measurements at the 
site of interest. Samal [20] compared wind speed data measured on a 50 
m mast to data from MERRA2 in the state of Odisha (India), observing 
significant discrepancies in hourly, monthly, and seasonal variations. 
However, no study was conducted on wind directions, nor were any 
suggestions made as to how to improve the usability of the data avail
able in MERRA2 [20].

In this context, MCP methods present an opportunity to establish, 
over a short training period, the relationship between reanalysis data 
used as a reference and wind data recorded at a selected ground site. The 
goal is to transform the reanalysis data to more accurately reflect the 
real long-term behavior of the wind speed and direction at the selected 
ground site.

1.1. Aims and originality of this paper

This study proposes a novel approach to reconstructing the historical 
(long-term) behaviour of wind speed and direction at a target site when 
only limited short-term measurements are available. The reconstructed 
series provide a consistent representation of the past wind regime
—including its daily, seasonal and interannual variability—which is 
essential for estimating the long-term energy production of a wind tur
bine installation. The methodology relies on the use of reanalysis data
sets (ERA5 and/or MERRA2) as the reference source from which the 
long-term series are reconstructed. This is particularly relevant 
because, although widely used, reanalysis products do not always 
reproduce local observations accurately and therefore require bias 
correction before they can be employed with confidence. Within this 
framework, the proposed approach also enables an assessment, for a 
given site, of which reanalysis dataset (ERA5, MERRA2 or their 

combination) is most suitable once corrected through ML-based MCP 
models. The main contributions and original aspects of the work are 
summarized below: 

i. Exploration of direct and two-stage MCP models for handling 
linear and circular variables. Beyond the conventional two- 
stage approach—where wind's Cartesian components (x and y) 
are estimated first and subsequently converted into polar co
ordinates (magnitude and direction) [21] —this study also em
ploys MCP models that directly predict wind speed (a linear 
variable) and wind direction (a circular variable [22]). The 
objective is to determine which strategy (direct or two-stage) is 
more suitable for estimating wind speed and direction. Within the 
two-stage framework, two variants are analyzed for the first time: 
single-output models, where each wind component (Vx and Vy) 
is predicted by an independent model, and dual-output models, 
where both components are estimated simultaneously by a single 
model. To the best of our knowledge, this comparative analysis 
has not been previously conducted.

ii. Evaluation of different ML techniques within MCP methods. 
Several of the most commonly applied supervised ML techniques 
in MCP contexts—RF, SVR, XGB, and ANN—are systematically 
tested in order to identify which method provides the most 
effective bias correction and the most robust long-term pre
dictions. This comparative perspective is essential because the 
choice of ML technique can significantly affect model perfor
mance, yet it has received little attention in previous MCP studies 
using reanalysis data.

iii. Comprehensive assessment of training period length and 
selection. All available years in series (2001–2023) were rotated 
as training periods, with the remaining years used for testing. An 
analogous procedure was applied for 2, 3, and 4 years of training 
(e.g., 2001–2002 for training and 2003–2023 for testing, and so 
on), enabling an extensive evaluation of how both the duration 
and the specific choice of the training period affect model per
formance. The results obtained for 1, 2, 3, and 4 years are pre
sented and discussed, with emphasis on the practical implications 
for planning measurement campaigns and for the applicability of 
the models in sites with limited on-site data.

2. Method and meteorological data

A block diagram illustrating the proposed method, covering the 
process from data collection to result analysis, is shown in Fig. 1.

2.1. Overview of the method

The first task in the process is the collection of data from the selected 
sources, which in this case include reanalysis data from MERRA2 and 
ERA5 as well as data recorded by a ground-based anemometric tower.

The second task focuses on comparing the data from the three 
sources to identify potential discrepancies between them. In this task, 
wind speed, wind direction, and mean wind power density data from the 
TS are compared with the corresponding data from the reanalysis 
sources.

The third task involves the selection of four ML techniques. Using 
each technique and with data from the reanalysis sources (individually 
and combined), two types of MCP models are constructed. The first type, 
referred to as direct prediction models, directly estimate wind speed (a 
linear variable) or wind direction (a circular variable). The second type, 
known as two-stage models, firstly predict the Cartesian x and y com
ponents of the wind and then determine its polar coordinates (i.e., the 
modulus of the wind speed and its direction). Within the two-stage 
approach, we considered two variants: (i) single-output models, 
where independent models are trained for Vx and Vy, and (ii) dual- 
output models, where a single model simultaneously estimates both Vx 
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and Vy.
The fourth task analyzes the error and association metrics obtained 

from the different models. The fifth task examines the trend in error and 
association metrics as the number of years used for training and data 
validation increases.

2.2. Task-1: data collection

The data collected from the reanalysis sources are maintained in 
their original format. Specifically, for the period from January 1, 2001, 
to December 31, 2023, the recorded variables include the date (year, 
month, day, and time) and the Cartesian components of wind speed (Vx 

and Vy, in m/s) at a height of 10 m above ground level. For the ground- 
based source, the meteorological variables recorded are wind speeds (V, 
in m/s) and directions (θ, in degrees), measured using a cup anemometer 
and a wind vane installed on an anemometer tower at a height of 10 m 
above ground level. This tower is located on the island of Gran Canaria 
(Canary Archipelago, Spain) at UTM coordinates 27◦ 55′ 04'' N latitude, 
15◦ 23′ 43'' W longitude. If necessary, the Cartesian components of wind 
speed (Vx and Vy) are converted to polar coordinates (V and θ). North is 
defined as θ = 0◦, and clockwise rotation is considered positive. To 
calculate V and θ, Eq. (1) and Eq. (2) are used. 

V =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Vx
2 + Vy

2
√

(1) 

Fig. 1. Schematic representation of the process used to estimate long-term wind speed and direction at a target site using MCP methods with reanalysis data as input.
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θ=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan− 1
(

Vx

Vy

)

, if Vy > 0,Vx ≥ 0

π
2
, if Vy = 0,Vx > 0

tan− 1
(

Vx

Vy

)

+ π, if Vy < 0

tan− 1
(

Vx

Vy

)

, if Vy ≥ 0,Vx < 0

undefined, if Vy = 0,Vx = 0

(2) 

Similarly, when using two-stage models, the wind speed modulus (V) 
recorded at the ground-based anemometer station is decomposed into its 
Cartesian components: Vx = V sin(θ) and Vy = V cos(θ).

2.3. Task-2: Comparison of ground and reanalysis data

The comparison of the data obtained from the three sources is per
formed from four perspectives: a) From the perspective of the frequency 
distributions of wind speeds and directions; b) From the perspective of 
the seasonal and daily evolution of wind speed; c) From the perspective 
of the differences in mean wind power densities; and d) From the 
perspective of local accuracy.

2.3.1. Comparisons between probability density functions
To facilitate the evaluation of the differences between the probability 

histograms, the corresponding probability density functions are deter
mined. In this context, the univariate continuous parametric probability 
density functions used are specific to the two types of variables: wind 
speed and wind direction: 

a) For the wind speed (V), the two-component mixture Weibull distri
bution, whose probability density function is given by Eq. (3) [23].

PDFv(v,α1, β1,α2, β2,ω)=ω

⎡

⎣α1

β1

(
v
β1

)α1 − 1

e
−

(
v

β1

)α1⎤

⎦

+ (1 − ω)

⎡

⎣α2

β2

(
v
β2

)α2 − 1

e
−

(
v

β2

)α2⎤

⎦ (3) 

where 0 ≤ω ≤ 1 is a mixture parameter, α1 > 0 and α2 > 0 are shape 
parameters and β1 > 0 and β2 > 0 are scale parameters. 

b) For the circular variables (θ), a finite mixture of M = 5 von Mises 
distributions [24] whose probability density function is given by Eq. 
(4):

PDFθ

(
θ, κj, μj,ωj

)
=
∑M

j=1

ωj

2πIo
(
κj
)exp

[
κj cos

(
θ − μj

)]
; 0≤ θ ≤ 2π (4) 

where the ωj are nonnegative quantities that sum to one, Eq. (5), Io(κj) is 

the modified Bessel function of the first kind and order zero [25], and κj 
≥ 0 and 0≤μj ≤ 2π are real parameters. 

0≤ωj ≤ 1 ; (j= 1,….,M) and
∑M

j=1
ωj = 1 (5) 

The maximum likelihood method [23] is used to estimate the pa
rameters of the different distributions. The Cramér-von Mises (CvM) test 
is used to test the goodness-of-fit of the distributions of circular variables 
to the experimental histograms, and the Anderson-Darling (A-D) test in 
the case of the distributions of linear variables [26].

Three tests are employed to compare the global reanalysis wind 
speed distributions with the global TS wind speed distribution: the A-D 
test [26], the Kolmogorov-Smirnov (K-S) test [26], and the energy dis
tance (E-D) test for equality of distributions [27]. The E-D metric is 
particularly useful when the distributions are not normally distributed 
or have unequal variances. This test calculates a statistic based on the 
mean distance between points within and between samples [27].

To compare the reanalysis wind direction distributions with the TS 
wind direction distribution, the same tests are applied, except that the A- 
D test is replaced with the CvM test [26].

In addition, the Wasserstein distance (WD) metric, also known as the 
optimal transport distance or earth mover's distance [28], is used to 
analyze the geometric similarity between the global distributions of 
wind speeds and directions in the TS data and those provided by ERA5 
and MERRA2. If F and G are the cumulative distribution functions 
(CDFs) of two distributions, the metric is defined as shown in Eq. (6). We 
set p = 1, as our goal is to analyze general differences. 

Wp(F,G)=
(∫

|F(x) − G(x)|pdx
)1/p

(6) 

2.3.2. Comparisons of wind speed seasonal variations and daily means
The degree of correlation between wind speed seasonal variations 

and daily means is determined using Pearson's correlation coefficient, as 
defined in Eq. (7). This metric is widely used in MCP methods [9].  

In Eq. (7), xi and yi are the individual values of two variables X and Y, 
respectively.

2.3.3. Comparison of mean wind power densities
The mean wind power densities (WPD) are estimated using Eq. (8)

[29]. 

WPD=
1
2n
∑n

i=1
ρiv3

i (8) 

In Eq. (8), ρi are the air densities. Most authors [30,31]use Eq. (8), 
assuming that air density is constant over time, and employ the standard 
value of 1.225 kg m− 3, corresponding to standard atmospheric condi
tions (completely dry air, and mean pressure and air temperature at sea 
level of 1013.25 hPa and 15 ◦C, respectively).

2.3.4. Analysis of the accuracy of wind speed and direction data
The errors generated when representing the TS variable data using 

reanalysis variable data are analyzed. For linear target variables (wind 

r=

∑n
i=1

(

xi −

∑n
i=1

xi

n

)(

yi −

∑n
i=1

yi

n

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1

(

xi −

∑n
i=1

xi

n

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1

(

yi −

∑n
i=1

yi

n

)2
√ r

⎧
⎨

⎩

= 1 Perfect positive linear relationship

= − 1 Perfect negative linear relationship

= 0 No linear relation (though non − linear relations may exist).

. (7) 
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speed), the error and association metrics used are the mean absolute 
error (MAE), Eq. (9), the root mean squared error (RMSE), Eq. (10), and 
the coefficient of determination (R2), Eq. (11), as these metrics are 
widely used in wind resource estimation [21]. The RMSE is used to 
evaluate large deviations, while the MAE is more robust to outliers. In 
this task, R2 serves as a measure of how much of the variability in the TS 
data is explained by the reanalysis data. 

MAE=
1
n
∑n

i=1
|yi − ŷi| (9) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(10) 

R2 =1 −

∑n

i=1

(

yi −

∑n
i=1

yi

n

)2

∑n

i=1
(yi − ŷi)

2
(11) 

In Eq. (9), Eq. (10), and Eq. (11), yi is the observed (true) value, ŷi is the 
predicted value, and n is the total number of observations.

For circular target variables (wind direction) defined within the 
range [0◦,360◦], it is crucial to use specific error metrics that account for 
the circular nature of the data. To address this, the Circular_Difference 
function is defined in Eq. (12). Based on Eq. (12), custom metrics, 
referred to as RMSE_Circular (Eq. (13)) and MAE_Circular (Eq. (14)), are 
introduced. 

CircularDifference(θi, θ̂ i)=min(|θi − θ̂ i|,360◦ − |θi − θ̂ i|) (12) 

RMSECircular =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

[
CircularDifference(θi ,θ̂i)

]2

√

(13) 

MAECircular =
1
n
∑n

i=1

⃒
⃒CircularDifference(θi ,θ̂i)

⃒
⃒ (14) 

In Eq. (12), Eq. (13) and Eq. (14), θi is the observed (actual) value, θ̂ i i is 
the predicted value, and n the total number of observations. The degree 
of association between wind directions is estimated with the circular- 
circular correlation coefficient of Jammalamadaka and Sarma [32], 
Eq. (15). The original formulation was proposed by Jammalamadaka & 
Sarma [32], and is described in detail by Jammalamadaka & SenGupta 
(2001) [33]. 

rc =

∑n
i=1 sin(ϕi − ϕ)⋅sin(φi − φ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∑n

i=1
sin2

(ϕi − ϕ)
)

⋅
( ∑n

i=1 sin2
((φi − φ))

)
√ (15) 

In Eq. (15), (ϕ1,φ1),…, (ϕn,φn) represent the samples of n data from the 
directions (in radians) of two sources and ϕ and φ are the sample mean 
directions, Eq. (16), [33]. 

ϕ=atan2

(
∑n

i=1
sin(ϕi),

∑n

i=1
cos(ϕi)

)

; φ=atan 2

(
∑n

i=1
sin(φi),

∑n

i=1
cos(φi)

)

(16) 

These global error and association metrics (MAE, RMSE, MAE_Cir
cular, RMSE_Circular and rc) are standard in MCP applications. They 
quantify how effectively the MCP models reduce the discrepancies be
tween reanalysis datasets and local observations and are widely used in 
the literature to evaluate the performance of MCP-based reconstructions 
of long-term wind conditions

2.4. Task-3: Training, test and validation of the different MCP methods 
based on ML techniques

The proposed models for estimating the target variables were 
developed using multiple regression, Eq. (17). 

Yt = f(Xt)= f

(

Vx,t ,Vy,t ,Vt

⏞̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅⏞
MERRA2

,Vx,t ,Vy,t ,Vt

⏞̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅⏞
ERA5

,Hc,Hs, Sc, Ss

)

(17) 

In the functional forms of the model, X = (X1,…,Xd)
T are the input 

variables, the subscript t indicates the instant evaluated, and Yt =
(
V, θ,

Vx or Vy
)

represents the estimated response variable V, θ, Vx or Vy of the 
TS. Hc and Hs, are harmonic transformations of the hour of the day (H), 
while Sc and Ss denote harmonic transformations of the seasonal cycle. 
These transformations allow the models to capture cyclic patterns and 
avoid artificial discontinuities that could be misinterpreted by ML 
techniques.

Two alternative formulations were considered for the seasonal cycle: 
Eq. (18), based on the month M, i.e. a monthly harmonic, and Eq. (19), 
based on the day of year d, i.e. a daily harmonic. 

Hc = cos
(

2πH
24

)

; Hs = sin
(

2πH
24

)

; Sc = cos
(

2πM
12

)

; Ss = sin
(

2πM
12

)

(18) 

Hc = cos
(

2πH
24

)

; Hs = sin
(

2πH
24

)

; Sc = cos
(

2πd
365

)

; Ss = sin
(

2πd
365

)

(19) 

The function Yt =
(
V, θ,Vx or Vy

)
is valid for estimating each of the 

target variables. Input variables can be drawn from a single reanalysis 
data source (MERRA2 or ERA5) or simultaneously from both data 
sources (MERRA2 and ERA5).

A broader discussion of alternative methodological options, 
including additional variables, spatial extensions, and other comple
mentary approaches, is provided in Section 4 (Limitations).

Fig. 2 presents a block diagram that schematizes the training, vali
dation, and testing processes for the various MCP models using the 
different ML techniques considered.

The process is summarized in three steps, each represented by a 
number enclosed in a circle. The first step involves determining the 
optimal hyperparameters for the model under consideration. The data 
are divided into K = 5 folds to train and evaluate the model using cross- 
validation, ensuring robustness and minimizing the risk of overfitting. In 
each iteration, one-fold is used as the validation set, while the remaining 
folds are used for training. Next, the model is defined using the selected 
ML technique, and the error metric to be employed in the training and 
validation process of the MCP model is specified.

The proposed ML techniques are as follows [34]: random forest (RF), 
selected for its robustness against overfitting [35] and its strong per
formance in previous MCP studies [36]; extreme gradient boosting 
(XGBoost), chosen for its high accuracy and computational efficiency 
[34]; support vector regression (SVR), included for its effectiveness in 
solving regression problems with complex and nonlinear relationships, 
as well as its strong results in previous MCP research [29]; and artificial 
neural network (ANN), utilized for its ability to learn complex patterns 
and its extensive application in MCP problems [37].

In the case of circular target variables, the custom metric RMSE_
Circular, Eq. (12), is used to account for the circular nature of the target 
variables. This metric is directly employed as an evaluation criterion 
during the model training and validation process.

For each ML technique used, the hyperparameter search space is 
defined, meaning that key values are explored to optimize model 
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performance. In the case of RFs, the hyperparameters explored include 
the number of trees (num.trees), the number of randomly selected var
iables in each split (mtry), and the maximum depth of the trees (max. 
depth) [38].

In the case of XGBoost, the hyperparameters defined include the 
number of trees (nrounds), learning rate (eta), maximum tree depth 
(max_depth), instance and feature subsampling (subsample, colsam
ple_bytree), and regularization parameters (gamma, lambda, and alpha) 
[38]. For SVR, different values of the key parameters (C and σ) are tested 
using a predefined grid [38]. For ANN, combinations of hyper
parameters are explored, including the number of hidden layers (be
tween 1 and 3), the number of neurons per layer (between 10 and 200), 
the dropout rate in each layer (between 0 and 0.5), the learning rate 

(0.001, 0.0001, or 0.00001), and the number of epochs (with a 
maximum value of 1000). The random selection of hidden neurons is 
programmed to follow a pyramidal shape, where the number of neurons 
decreases from the first to the last layer. This structure adheres to the 
so-called geometric pyramid rule [39]. The early stopping parameters 
are also defined as follows: patience, the number of epochs without 
improvement before stopping training, is set to 10; and min_delta, the 
minimum change in RMSE improvement, or RMSE_Circular, considered 
significant, is set to 10− 3.

The artificial neural networks used in this study are fully connected 
feed-forward multilayer perceptrons. Hidden layers employ the ReLU 
activation function, while the output layer is linear for V, Vx, and Vy, and 
adapted to circular metrics for θ. Training was performed using the 

Fig. 2. General configuration of the methodological procedure followed.
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Adam optimizer together with early stopping, as described above.
To ensure comparability across ML techniques, hyperparameter 

combinations were generated through a randomized but controlled 
procedure and stored in catalogs for reproducibility. This guarantees 
that each technique was explored under equivalent conditions, avoiding 
biases due to unequal search spaces. In the case of ANN, catalogs were 
created separately for the direction task and for the other targets, with 
adjusted ranges, while maintaining the pyramidal constraint on the 
number of neurons.

In XGBoost and RF, data standardization is not required due to the 
nature of the underlying algorithms. However, for SVR and ANN data 
preprocessing is necessary to ensure that the predictor variables are on 
the same scale and to facilitate optimal model performance. For these 
models, the training data are standardized (centered and scaled), and 
the same transformation parameters are applied to the validation and 
test data. In addition, for ANN and SVR the target variables were also 
standardized during training and subsequently rescaled to their original 
units for the computation of evaluation metrics.

Initially, each target variable (V, θ, Vx, Vy) was estimated with an 
independent model, in order to maintain methodological consistency 
across all ML techniques. This choice is particularly relevant because V is 
a linear variable, whereas θ is circular and requires dedicated loss 
functions and validation metrics, which are not natively implemented in 
most ML frameworks.

Each ML technique optimizes a specific loss function during training. 
For RF, the splitting criterion is based on minimizing the variance within 
nodes, which is equivalent to squared error loss in regression tasks. For 
XGB, the default squared error objective was used. For SVR, training is 
based on the ε–insensitive loss, which penalizes deviations larger than ε 
while ignoring smaller residuals. For ANN, the loss function corresponds 
to the mean squared error (MSE) for linear variables, while for circular 
variables (θ) a circular loss based on the minimum angular difference 
between observed and predicted values was implemented. In the case of 
dual-output ANN models (Vx and Vy), the losses of both outputs were 
combined either as an unweighted mean or as a variance-weighted 
mean, as detailed above.

In the case of ANN, however, we also implemented dual-output 
models for Vx and Vy in order to directly compare their performance 
against the single-output approach. For these dual-output ANN models, 
two alternative strategies were tested for combining the losses of both 
outputs: Unweighted mean, Eq. (20) and Variance-weighted mean, Eq. 
(21). 

L =
1
2
(
L Vx +L Vy

)
(20) 

L =
σ2

Vx

σ2
Vx

+ σ2
Vy

L Vx +
σ2

Vy

σ2
Vx

+ σ2
Vy

L Vy (21) 

where L Vx and L Vy denote the mean squared error for each component, 
andσ2

Vx 
and σ2

Vy 
are their sample variances in the training set. The second 

formulation ensures that the more variable component exerts propor
tionally greater influence during optimization.

While ANNs allow for true multi-output designs with shared pa
rameters, the situation differs for the other ML techniques considered. 
RF in scikit-learn natively support multi-output regression, since each 
tree leaf can store a vector of values. Nevertheless, this option was not 
used here in order to maintain methodological comparability across 
techniques. For SVR and XGBoost, no native multi-output regression 
implementation is available. Their extension to multi-output relies on 
wrappers such as MultiOutputRegressor, which simply train an inde
pendent model for each target variable without parameter sharing or 
reduction in overall complexity. For this reason, in this study the multi- 
output formulation was restricted to ANNs only.

Although this study tested dual-output ANN models for the linear 
components Vx and Vy, no joint multi-output design was implemented 

for V and θ. This decision is motivated by their heterogeneous statistical 
nature: V is a linear variable, usually modeled with squared-error loss, 
whereas θ is circular and requires specialized losses based on angular 
differences. Combining both targets in a single training process would 
demand a careful weighting or normalization of such heterogeneous 
losses, and may even require transforming θ into its Cartesian compo
nents (cosθ, sinθ) to avoid discontinuities. Given these technical chal
lenges, and to ensure methodological comparability across ML 
techniques, V and θ were modeled independently in this study.

In step 2, the model is trained with the best parameters and evaluated 
using all available short-term data. For the evaluation, we use the 
metrics MAE, (Eq. (8)), RMSE (Eq. (9)), and R2 (Eq. (10)) for the linear 
target variables, and MAE_Circular (Eq. (13)), RMSE_Circular (Eq. (12)), 
and rc (Eq. (14)) for the circular target variables. Table A.1 in Appendix 
A lists the main R libraries used to define and train each ML technique. In 
step 3, the best model (with the best parameters) is applied to estimate 
the values of the long-term target variable.

2.5. Task-4: Analysis of results using statistics metrics

The differences in the metric values obtained by the different MCP 
models analyzed are evaluated.

In addition to the comparative analysis from the perspective of local 
accuracy, this task includes, as in Task-2, a comparison between the data 

Fig. 3. Algorithm used to select training and test years, reference data sources 
and models trained, validated and tested with each ML technique.
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measured at the TS and the data estimated by the best MCP models. The 
comparison is made from the following perspectives: (a) frequency 
distributions of wind speeds and directions; (b) seasonal and daily 
evolution of wind speed; and (c) differences in mean wind power 
densities.

2.6. Task-5: Analysis of performance

The steps outlined in Fig. 2 are performed using one year of data for 
training (short term) and the remaining years for testing (long term).

Fig. 3 shows the algorithm employed for this process, which achieves 
its objective when Y = 1. In this task, the goal is to analyze the effect on 
the error and association metrics of the number of years used for training 
and validation. The algorithm depicted in Fig. 3 represents the proced
ure followed to achieve this, with the objective reached when Y = 4.

3. Results and discussion

This section presents the results of the analyses conducted based on 
the tasks described in the methodology, as outlined in Fig. 1.

3.1. Task-2: Comparison of the data collected in the three data sources 
(ground and two different reanalysis data)

The following subsections present and analyze the results obtained in 
Task-2 from the perspectives outlined in Fig. 1.

3.1.1. Probability density functions of wind speed and wind direction
The comparison between the probability distributions of wind speeds 

at the TS and those derived from ERA5 and MERRA2 (Fig. 4) reveals 
statistically significant differences (Table A.2). The observed series 

exhibits a bimodal regime, whereas both reanalyses show unimodal 
distributions with lower means (7.2 m/s at the TS, 6.6 m/s in MERRA2, 
and 5.5 m/s in ERA5). These results demonstrate that both reanalyses 
systematically underestimate the mean wind speed at the site.

Linear correlations between reanalysis data and the TS are moderate 
(r ≈ 0.72–0.74), while ERA5 and MERRA2 are highly correlated with 
each other (r = 0.92). It should be noted that these correlations were 
calculated from the hourly wind speed series used to construct the his
tograms, rather than directly from the histograms.

Regarding wind direction, Fig. 5 shows marked discrepancies be
tween reanalyses and on-site measurements, with predominant patterns 
poorly represented. Table A.3 reports the parameters of the fitted wind 
direction distributions and the p-values of the goodness-of-fit tests. The 
circular–circular correlation coefficients are very low, and in some cases 
even negative, between MERRA2 and ERA5 and between MERRA2 and 
the TS. The coefficient proposed by Jammalamadaka and SenGupta [33] 
is a robust measure: small or negative values indicate the absence of a 
simple circular–linear relationship, although they do not rule out more 
complex dependencies influenced by other factors [22].

Detailed statistical tests (A–D, K–S, E–D, and CvM) and distance 
metrics (WD) quantifying differences between distributions are pro
vided in Appendix A (Tables A.4 and A.5). These results confirm that the 
ERA5 and MERRA2 distributions differ significantly from those 
observed at the TS. Altogether, these discrepancies highlight the limi
tations of using raw reanalysis data to represent local wind conditions 
and provide the rationale for applying ML-based MCP models in the 
following tasks.

3.1.2. Wind power densities
The absolute percentage error (APE) obtained between the (WPD)

calculated using TS wind speeds and those calculated with MERRA2 and 

Fig. 4. Histograms and probability density functions of wind speeds recorded in: (a) MERRA2, (b) ERA5, and (c) the target site. The correlations were calculated 
from the hourly wind speed series used to construct the histograms.
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ERA5 wind speeds (Eq.(21)) were 39 % and 63.1 %, respectively. The 
mean WPD is an important indicator of wind energy potential and is 
commonly included in regional wind resource maps as valuable pre
liminary information to identify potentially attractive sites for wind 
project installations [29]. In this context, the APE values indicate sig
nificant percentage differences between the reanalysis data and the TS 
data. These findings align with the results reported by Samal [20] in his 
study using MERRA2 data and measurements recorded in the Indian 
state of Odisha. 

APE=

⃒
⃒
⃒
⃒WPDTS − WPDReanalysis(MERRA2 or ERA5WPDTS

⃒
⃒
⃒
⃒× 100 (21) 

3.1.3. Seasonal and daily wind speed variation
Fig. 6 shows the mean daily wind speeds derived from the three data 

sources. The Pearson correlation coefficients reveal a very weak rela
tionship between the reanalysis datasets and the TS, indicating that 
MERRA2 and ERA5 do not reproduce the actual daily wind speed pro
file. This emphasizes the need for model-estimated data to approximate 
the real daily cycle and to capture seasonal patterns more accurately.

Such improvements are essential in applications where the hourly 
wind-power profile must be realistically represented. One study [40] 
demonstrated that accurate hourly wind data are crucial for the optimal 
sizing of stand-alone wind-powered desalination systems. Another work 
[41] showed that realistic temporal wind profiles are also required when 
assessing the carbon footprint of desalination processes in island grids 
with limited flexibility.

The seasonal evolution of monthly mean wind speeds is presented in 
Fig. 7. All three data sources show the highest values in June, July, and 

August, but during these months the differences between reanalysis and 
TS are most pronounced. In general, reanalysis data consistently un
derestimate the observed wind speeds. Nevertheless, the Pearson cor
relation coefficients between the monthly mean values at the TS and 
those from MERRA2 and ERA5 are 0.929 and 0.949, respectively, con
firming a strong relationship in the representation of seasonal 
variability.

These results confirm that raw reanalysis data fail to reproduce the 
local daily wind cycle and systematically underestimate seasonal wind 
speeds, even though the overall seasonal trends are well captured. Such 
discrepancies highlight the need for bias-correction methods, which will 
be addressed through the ML-based MCP models evaluated in the 
following sections.

3.1.4. Local accuracy
Table 1 shows the error and correlation metrics obtained by 

comparing reanalysis wind speed and direction data with TS measure
ments. For wind speeds, ERA5 shows higher MAE and RMSE values than 
MERRA2, but also a slightly higher R2 (54.3 % vs. 52.0 %). For wind 
directions, ERA5 achieves lower MAE and RMSE errors and a higher 
correlation coefficient rcr_crc than MERRA2.

These results indicate that, although both reanalysis datasets contain 
useful information, their direct use is affected by substantial errors in 
both speed and direction. This reinforces the need for bias-correction 
methods to fully exploit the potential of reanalysis data. In the next 
sections, ML-based MCP models are applied precisely to address these 
discrepancies.

Fig. 5. Histograms and probability density functions of wind directions recorded in: (a) MERRA2, (b) ERA5, and (c) the target site. The correlations were calculated 
from the hourly wind direction series used to construct the histograms.
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3.2. Training, test and validation of the different MCP methods using ML 
(Task − 3)

Table 2 presents the mean values of the metrics obtained during the 
testing process (long term) for the two types of MCP models (direct and 

single-output two-stage models) and the three data sources (MERRA2, 
ERA5, and MERRA2 & ERA5) using each of the ML techniques consid
ered (RF, XGBoost, SVR, and ANN).

Artificial neural networks (ANN) consistently achieve the lowest 
errors (MAE, RMSE, MAE_Circular, RMSE_Circular) and the highest 

Fig. 6. Mean daily wind speeds calculated using the three data sources and the best MCP model.

Fig. 7. Seasonal variation of mean wind speeds calculated using the three data sources and the best MCP model.
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coefficients of determination (R2 and rc) in almost all configurations, 
confirming their superior ability to capture the nonlinear relationships 
between reanalysis inputs and local wind conditions. While RF and 
XGBoost occasionally perform comparably for wind speed estimation in 
direct models (as confirmed by Wilcoxon tests), ANN remains the only 
technique that systematically excels for both linear and circular targets.

For wind speeds, direct models tend to provide slightly lower global 
errors, while two-stage models capture directional behavior more 
accurately, yielding higher circular correlations. This complementarity 
highlights the importance of evaluating both approaches when cor
recting reanalysis biases.

An additional point of interest concerns the relative behavior of 

ERA5 and MERRA2. Before post-processing, MERRA2 wind speeds are 
closer to the TS values than those of ERA5. However, once corrected 
with ANN-based MCP models, ERA5 systematically outperforms 
MERRA2, both in direct and two-stage formulations. This inversion 
highlights the fact that raw accuracy of reanalysis data does not neces
sarily translate into better performance after bias correction. It also 
explains why ERA5-based methods generally surpass MERRA2-based 
ones in the corrected results. Whether this behavior is specific to the 
conditions of the present site or represents a broader pattern is an open 
question. Comparative studies at other locations with different climatic 
and topographic settings would be needed to determine its generality, 
which constitutes an important direction for future research.

The analysis of the hyperparameter catalogs (Appendix A, Table A.6) 
reveals systematic patterns: 

a) Models estimating wind direction required, on average, larger hid
den layers than those estimating wind speed, reflecting the added 
complexity of circular targets.

b) Two-stage models typically needed more neurons than direct models 
for wind speed estimation, likely because they must reconstruct in
termediate Cartesian components before converting them to polar 
form.

Table 1 
Error and association metrics between TS data and reanalysis data.

Sources Wind speeds Wind directions

MAE 
(m/s)

RMSE 
(m/s)

R2 

(%)
MAE 
(degree)

RMSE 
(degree)

rc

MERRA2- 
TS

2.05 2.61 52.00 67.3 75.1 − 0.0967

ERA5-TS 2.38 3.05 54.30 27.62 43.11 0.2575

Table 2 
Mean values of error and correlation metrics obtained during the testing process (long-term) for different ML techniques (RF, XGBoost, SVR, ANN), model types (direct 
and two-stage), and reanalysis sources (MERRA2, ERA5, and their combination). The upper half of the table reports results for wind speed (MAE, RMSE, R2), while the 
lower half corresponds to wind direction (MAE, RMSE, circular correlation coefficient rc). Boldface indicates the best performance within each metric set. The last 
three columns show the adjusted p-values from Wilcoxon tests comparing ANN with the other ML techniques.

Model type Source data Target Metric Machine learning technique Test. p-values

RF XGBoost SVR ANN RF/ANN XGBoost/ANN SVR/ANN

Direct models MERRA2 V MAE (m/s) 1.49 1.49 1.62 1.48 0.324 0.453 <0.001
ERA5 1.42 1.40 1.54 1.40 0.048 0.800 <0.001
MERRA2&ERA5 1.38 1.40 1.64 1.39 0.700 0.209 <0.001

MERRA2 RMSE (m/s) 1.91 1.91 2.08 1.89 0.016 0.068 <0.001
ERA5 1.83 1.81 1.99 1.79 0.001 0.133 <0.001
MERRA2&ERA5 1.78 1.80 2.10 1.77 0.481 0.003 <0.001

MERRA2 R2 (%) 75.35 75.25 70.10 75.79 0.012 0.064 <0.001
ERA5 77.50 78.01 72.65 78.43 <0.001 0.076 <0.001
MERRA2&ERA5 78.75 78.16 69.47 79.00 0.133 0.002 <0.001

Two-stage models MERRA2 V MAE (m/s) 1.55 1.57 1.76 1.51 <0.001 <0.001 <0.001
ERA5 1.47 1.48 1.64 1.43 <0.001 <0.001 <0.001
MERRA2&ERA5 1.44 1.45 1.75 1.41 0.007 0.001 <0.001

MERRA2 RMSE (m/s) 2.01 2.03 2.32 1.94 <0.001 <0.001 <0.001
ERA5 1.92 1.93 2.18 1.84 <0.001 <0.001 <0.001
MERRA2&ERA5 1.87 1.88 2.32 1.81 <0.001 <0.001 <0.001

MERRA2 R2 (%) 73.99 73.43 65.41 76.12 <0.001 <0.001 <0.001
ERA5 76.25 75.95 69.33 78.48 <0.001 <0.001 <0.001
MERRA2&ERA5 77.53 77.26 65.92 79.14 <0.001 <0.001 <0.001

Direct models MERRA2 θ MAE (degree) 71.56 69.20 52.76 20.28 <0.001 <0.001 <0.001
ERA5 69.64 67.54 51.93 19.71 <0.001 <0.001 <0.001
MERRA2&ERA5 71.63 70.76 59.60 19.72 <0.001 <0.001 <0.001

MERRA2 RMSE (degree) 87.73 86.24 71.17 34.74 <0.001 <0.001 <0.001
ERA5 86.40 84.93 69.78 33.84 <0.001 <0.001 <0.001
MERRA2&ERA5 88.03 87.64 74.79 33.94 <0.001 <0.001 <0.001

MERRA2 rc 0.001 0.224 0.210 0.610 <0.001 <0.001 <0.001
ERA5 0.083 0.248 0.179 0.627 <0.001 <0.001 <0.001
MERRA2&ERA5 − 0.04 0.105 0.046 0.619 <0.001 <0.001 <0.001

Two-stage models MERRA2 θ MAE (degree) 19.93 20.33 23.78 19.24 <0.001 <0.001 <0.001
ERA5 19.14 19.38 22.46 18.49 <0.001 <0.001 <0.001
MERRA2&ERA5 18.64 18.99 24.37 18.30 <0.001 <0.001 <0.001

MERRA2 RMSE (degree) 34.42 35.18 41.72 33.75 <0.001 <0.001 <0.001
ERA5 33.20 33.71 39.68 32.56 <0.001 <0.001 <0.001
MERRA2&ERA5 32.56 33.14 43.28 32.34 <0.001 <0.001 <0.001

MERRA2 rc 0.608 0.605 0.562 0.631 <0.001 <0.001 <0.001
ERA5 0.626 0.626 0.586 0.647 <0.001 <0.001 <0.001
MERRA2&ERA5 0.633 0.627 0.562 0.649 <0.001 <0.001 <0.001
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c) Dropout regularization and learning rates varied moderately across 
tasks, but no single configuration dominated, indicating that ANN 
performance is robust across a range of parameterizations.

d) The number of epochs required for convergence (Appendix A, 
Fig. A1) was generally higher for direct models estimating wind 
speed, suggesting a more gradual learning process compared to other 
tasks.

To further investigate methodological alternatives, dual-output ANN 
models (predicting Vx and Vy simultaneously) were compared with 
single-output models (separate training for each component). Interest
ingly, all variants—single-output, dual-output with unweighted mean 
loss, and dual-output with variance-weighted loss—converged to the 
same optimal hyperparameter configurations and produced identical 
results in this case study. This indicates that, under the parameter ranges 
explored, learning both components jointly did not provide measurable 
improvements in generalization.

This outcome can be explained by several technical factors: 

a) Separate models allow each network to dedicate its full capacity to a 
single variable, while dual-output models must share hidden repre
sentations, which may not be optimal for both outputs.

b) Vx and Vy exhibit different statistical distributions, so a joint loss may 
force compromises, “sacrificing” accuracy in one output to improve 
the other.

c) Balancing losses is non-trivial: if one component has larger variance, 
it may dominate training unless explicitly weighted.

d) Limited model capacity can restrict the ability of a dual-output 
network to simultaneously capture both patterns, while two single- 
output models double the effective capacity.

Despite the identical numerical performance, dual-output models 
remain attractive because they reduce computational cost: only one 
network must be trained, leading to shorter runtimes and simpler 

deployment. Thus, in practice, dual-output architectures can be rec
ommended when efficiency is a priority.

By contrast, no joint multi-output models were tested for wind speed 
(V) and wind direction (θ). Although such an approach could in prin
ciple improve the physical coherence of the predictions by capturing 
their interdependence, it presents important challenges. V is a linear 
target, typically optimized with squared-error loss, whereas θ is circular 
and requires dedicated angular loss functions. Combining both in a 
single training process would thus require careful normalization or 
weighting of heterogeneous errors, and may even involve transforming θ 
into its Cartesian components (cosθ, sinθ) to avoid discontinuities. These 
difficulties, together with the need to ensure methodological compara
bility across techniques, motivated the decision to train separate models 
for V and θ in the present study.

Regarding the seasonal encoding discussed in Section 2.4, two 
alternative formulations of the annual cycle were tested: a monthly 
harmonic pair, Eq. (18), and a daily harmonic pair, Eq. (19). Both ap
proaches provide a correct cyclic encoding, avoiding artificial discon
tinuities at the end of the year. While the daily formulation offers finer 
resolution of the annual cycle, the results obtained in this study did not 
show significant differences in predictive accuracy compared to the 
monthly representation.

This suggests that, for large-scale seasonal modulation, a monthly 
harmonic is parsimonious and sufficiently robust against interannual 
variability, whereas the daily formulation may become relevant in 
contexts where higher temporal resolution is critical. Extending this 
comparison to multiple sites with different climatic regimes would be 
necessary to determine whether daily harmonics consistently improve 
performance, representing a promising line of future work.

Overall, the results from Task 3 demonstrate that ANN-based MCP 
models provide the most reliable corrections of reanalysis biases. The 
comparative analysis of modeling alternatives (direct vs. two-stage, 
single-vs. dual-output, monthly vs. daily harmonics) shows that, 
although no significant accuracy gains were obtained from the more 

Fig. 8. Values of long-term wind speed error metrics.
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complex formulations in this case, they offer practical advantages (e.g., 
computational efficiency) and remain promising directions for future 
studies.

3.3. Task-4: Analysis of the methods based on fundamental statistical 
metrics

The following subsections show the results obtained in Task-4 from 
the points of view indicated in Fig. 1.

3.3.1. Local accuracy
Fig. 8 shows the error metrics (MAE and RMSE) obtained when 

comparing wind speed estimates from the MCP models with TS data. 
Errors are presented as a function of the ANN-based MCP method (direct 
or two-stage) and the input data sources (MERRA2, ERA5, or their 
combination). The lowest average errors are consistently achieved when 
both reanalysis datasets are combined. Moreover, all MCP-based esti
mates reduce the errors reported in Table 1, confirming the added value 
of bias correction compared with the raw reanalysis data.

Direct models generally yield lower mean errors than two-stage 
models for wind speed. Significant differences between the two ap
proaches are observed, except in the case of MAE when using MERRA2 
or MERRA2 & ERA5 as inputs. This suggests that, while both approaches 
are effective, direct models are slightly better suited for speed 
estimation.

Fig. 9 presents the error metrics (MAE and RMSE) for wind direction. 
In contrast to wind speed, two-stage models clearly outperform direct 
models, producing lower mean errors across all reanalysis inputs. The 
smallest errors are again obtained when combining MERRA2 and ERA5. 
For direct models, no significant differences are observed between ERA5 

alone and the combined dataset. As with wind speed, the MCP-corrected 
results are substantially better than those from raw reanalysis, regard
less of the training year.

Fig. 10 shows the correlation metrics: R2 for wind speed (left plots) 
and the circular correlation coefficient (rc) for wind direction (right 
plots). For wind speed, the highest R2 values are obtained when both 
reanalysis sources are combined, but no significant difference exists 
between direct (79 %) and two-stage (79.14 %) models. These results 
indicate that approximately 79 % of the observed wind speed variability 
can be explained by the predictors. Models trained with ERA5 consis
tently yield higher R2 values than those using MERRA2, a reversal of the 
pattern observed in the raw data (Table 1), which highlights the stronger 
corrective potential of ERA5 after ANN-based MCP processing.

For wind direction, two-stage models achieve the highest rc values, 
confirming their superiority in capturing directional behavior. No sig
nificant differences are found between ERA5 and the combined dataset 
in this case. To facilitate interpretation, the comparison of circular 
correlations in Fig. 10 was performed using a broken y-axis, which en
hances the readability of differences in the central range while still 
displaying outliers to provide a complete picture of the results.

Overall, the results from Task-4 confirm that ANN-based MCP 
models substantially reduce the errors of raw reanalysis data and cap
ture both wind speed and direction with good accuracy. Nevertheless, 
model performance is not only influenced by the choice of approach 
(direct vs. two-stage) or data source (MERRA2, ERA5, or their combi
nation), but also by the amount of on-site data available for training. The 
following section therefore examines the impact of training period 
length, a critical factor for practical applications where measurement 
campaigns are typically short.

Fig. 9. Values of long-term wind direction error metrics.
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3.3.2. Wind speed and direction distribution functions
The ability of MCP-based models to reproduce the statistical distri

bution of wind variables was assessed by comparing the estimated and 

observed series at the TS.
For wind speeds, the direct model with combined reanalysis inputs 

(MERRA2 & ERA5) provided the best performance, as also reflected in 

Fig. 10. Correlation metrics of ANN-based MCP models compared with TS data. The left plots show the determination coefficient (R2) for wind speed, while the right 
plots display the circular correlation coefficient (rc) for wind direction. Results are presented for direct and two-stage models using MERRA2, ERA5, and their 
combination (MERRA2 & ERA5) as input sources. To enhance readability, the right-hand plots use a split Y-axis scale at rc = 0.6, which emphasizes the central 
distribution while still displaying the outliers for completeness.

Fig. 11. a) Probability density function fitted to the wind data generated by the MCP model; b) Boxplot of correlation coefficients between the target site wind speeds 
and those estimated with the MCP model; c) Boxplot of the absolute percentage error (APE) values estimated using the target site wind speeds and the wind speeds 
generated by the MCP models.

J.A. Carta and P. Cabrera                                                                                                                                                                                                                    Renewable Energy 261 (2026) 125280 

14 



the lowest MAE and RMSE values (Fig. 8). Its fitted probability density 
function closely reproduced the bimodal pattern observed in the TS data 
(Fig. 11a).

The parameters of the fitted distributions are summarized in 
Table A.7, while the results of the formal goodness-of-fit tests are given 
in Table A.8. In all cases, the A–D, K–S, and E–D tests did not reject the 
null hypothesis of equality between the estimated and observed distri
butions at the 5 % level. The Wasserstein distance was also significantly 
lower than for raw reanalysis data, confirming the improved alignment. 
This is consistent with the cumulative probability curves (Fig. 12a), 
which show that MCP-corrected wind speeds follow the TS distribution 
much more closely than the raw reanalyses. The hourly correlations 
reached a mean value of 0.888 (Fig. 11b), a level classified as “good” in 
the MCP literature [37]. The mean wind speed obtained with the direct 
model (7.13 m/s) was practically identical to the observed value (7.2 
m/s).

For wind directions, the two-stage model with combined inputs 
(MERRA2 & ERA5) yielded the closest agreement with the TS distribu
tion. Its fitted probability density function (Fig. 13a) and the cumulative 
distribution (Fig. 12b) illustrate the strong alignment achieved after bias 
correction. The parameters of the distributions are provided in 
Table A.9, while the outcomes of the CvM, K–S, and E–D tests are shown 
in Table A.10. Again, the null hypothesis of equality between distribu
tions was not rejected, and the Wasserstein distance (0.13) was much 
smaller than for raw reanalysis data. The mean circular correlation co
efficient between estimated and observed hourly directions was 0.648 
(Fig. 13b), a substantial improvement over the raw correlations 
(Table 1). The estimated mean wind direction (4.58◦) was also nearly 
identical to the observed mean (4.49◦ at the TS), which has practical 

implications for turbine layout design, as proper alignment with pre
vailing winds helps reduce wake effects and increase energy efficiency.

In summary, both wind speed and wind direction distributions 
generated by ML-based MCP models can be considered statistically 
indistinguishable from TS observations, providing a robust basis for 
long-term wind resource assessment.

3.3.3. Wind power densities
As shown in Fig. 11c, the mean absolute percentage error (APE) 

between the wind power density (WPD) estimated by the direct MCP 
model and that calculated from TS wind speeds is 13.89 %. This repre
sents a substantial improvement compared to the APE values obtained 
when using raw reanalysis data (39 % for MERRA2 and 63.1 % for ERA5; 
see subsection 3.1.2). These findings confirm that MCP-based models are 
able to substantially reduce the bias of reanalysis data, providing wind 
power density values that are much closer to local observations. Since 
(WPD) is a key indicator for assessing the economic viability of wind 
projects, this improvement highlights the practical relevance of applying 
ML-based MCP models in wind resource assessment.

3.3.4. Seasonal evolution and daily mean behavior of wind speed
The MCP models also succeeded in reproducing the temporal struc

ture of wind speed variability. As shown in Fig. 6, the Pearson correla
tion between monthly mean wind speeds estimated with the direct 
model and those recorded at the TS was 0.996, a much higher value than 
those obtained when comparing the TS with MERRA2 or ERA5 alone. 
Similarly, the correlation between daily mean wind speeds estimated by 
the direct model and those observed at the TS reached 0.994 (Fig. 7). 
These results indicate that the MCP methodology not only corrects mean 

Fig. 12. Cumulative probabilities: a) Wind speed, b) Wind direction.

Fig. 13. a) Probability density function fitted to the wind direction data generated by the MCP model, b) Boxplot of correlation coefficients between the target site 
wind directions and those estimated by the MCP model.
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values but also preserves the seasonal cycle and the intraday profile of 
wind speeds. This capacity is particularly important for energy system 
applications, where matching wind generation with demand and plan
ning storage depends on capturing realistic hourly and seasonal 
dynamics.

3.4. Results of the analysis of performance (Task-5)

Fig. 14 shows the evolution of long-term error (MAE, RMSE, MAE_
Circular, RMSE_Circular) and association metrics (R2, rc) as the training 
window increases from one to four years (Y = 1–4). A consistent trend 
can be observed: error metrics decrease, while association metrics in
crease with longer training periods. This reflects the fact that larger 
training datasets allow the models to better capture the statistical re
lationships between predictors and target variables, leading to improved 
generalization and stability.

These results have important implications for the design of mea
surement campaigns. In the case studied, using only one year of training 
data already provides reasonably accurate estimates, but incorporating 
two or more years yields additional gains in robustness. This observation 
is consistent with the recommendation of Fadigas et al. [8], who 
emphasized the importance of extending measurement campaigns from 
24 to 36 months in Brazil to ensure reliable wind resource assessments. 
Our findings confirm that longer training periods enhance the general
ization ability of ML-based MCP models, reducing sensitivity to the 
specific choice of training year.

However, this technical improvement must be balanced against the 
practical costs of measurement campaigns. Extending the data collection 
period at the target site implies higher economic costs and, more criti
cally, longer delays in decision-making for wind project development.

In practice, long on-site measurement campaigns can delay invest
ment decisions, especially where wind farm development is regulated 
through competitive tenders with strict deadlines between call publi
cation and project submission. For this reason, developers often have no 
more than one year to collect wind data at a candidate site. While such a 
period is generally sufficient to characterize the seasonal cycle, it is 
insufficient to capture interannual variability, which typically requires 
substantially longer observational records.

In this context, our results highlight an important trade-off: while 
two or more years of training data improve the performance of MCP 
models, in practice many projects must rely on shorter campaigns (often 
≤1 year). The fact that our models already achieve high correlations (R2 

≈ 0.78, rc ≈ 0.63) and low errors with Y = 1 is therefore a key finding, as 
it shows that reliable bias correction of reanalysis data can be achieved 
even under the typical constraints faced by developers. Longer training 
windows, when available, remain desirable for research or strategic 
planning, but the practical feasibility of one-year campaigns makes them 
the default option in most real-world wind energy tenders.

4. Limitations

The present study was designed to evaluate the ability of ML-based 
MCP methods to correct the bias of a single reanalysis grid point at a 
target site. This choice is consistent with common practice in wind 
resource assessment, where reanalysis data are often used as a proxy for 
local conditions. However, several methodological alternatives remain 
unexplored.

First, the use of neighboring reanalysis grid cells could provide 
additional spatial context, although selecting the most representative 
nodes (closest vs. most correlated with the target site) would require a 

Fig. 14. Trend of a) MAE, b) RMS, c) R2, d) MAE_Circular, e) RMSE_Circular, and f) circular correlation coefficient (rc) metrics as the number of years used in the 
training of the MCP models increases.
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dedicated study. As indicated in Ref. [37], the use of a high number of 
reference stations (neighboring reanalysis grid cells) may result in 
overspecification with its associated negative effects. These include, 
among others, an increase in the estimation error and/or overfitting, 
which could be detrimental to the generalization capacity of the model 
when handling new data (prediction). Therefore, it would be necessary 
to analyze the benefits of feature selection [37]. It would also be 
appropriate to carry out a global sensitivity analysis method applied to 
wind speed and direction prediction models [42]. The relevance of a 
global sensitivity analysis is that it allows quantification of the contri
bution of the uncertainty of each input variable of the estimation model 
to the uncertainty of the model response [42]. Given the potential cor
relation between data from neighboring reanalysis grid cells, the global 
sensitivity method should consider the dependency among the input 
variables [42].

Second, it should be noted that the native spatial resolution is 
approximately 30 km for ERA5 and 50 km for MERRA2. Consequently, 
the target site may be located at a considerable distance from the cor
responding reanalysis node, which can affect the accuracy with which it 
represents local conditions. Depending on the distance to the grid node, 
as well as hourly variations in wind speed and direction, discrepancies 
may arise between the reanalysis series and the target site measure
ments, potentially leading to a lack of synchronization between them. In 
this context, the option of incorporating lagged predictors to capture 
delayed or advanced dependencies between the reference series and the 
target series deserves to be explored. Another possibility is to apply 
spatial interpolation methods between neighboring reanalysis nodes. 
Deterministic approaches, which estimate values based on nearby 
samples (e.g., Inverse Distance Weighting [43]), or geostatistical ap
proaches, which rely on statistical models and spatial autocorrelation to 
provide accuracy estimates (e.g., kriging [43]), could be used to esti
mate wind characteristics at the exact coordinates of the target site. 
These interpolated values could then serve as input to the ML models, 
potentially improving their representativeness.

Third, the incorporation of additional meteorological variables (e.g., 
pressure, temperature, solar radiation, relative humidity, etc.) into the 
input space of the ML models could be analyzed in order to improve the 
physical representation of the system and potentially reduce error 
metrics.

Fourth, ERA5 provides wind data at 10 m and 100 m above ground 
level, while MERRA2 provides data at three heights: 2 m, 10 m, and 50 
m. It is of interest to analyze the error metrics when including wind 
speeds at multiple altitudes as predictors. In this context, it should be 
noted that feature selection methods may discard some heights due to 
the high correlation among them [37]. It is worth noting that some 
authors [44] have suggested that the heights above ground level (agl) at 
which data are collected at the reference and target sites should be 
similar.

Another important limitation is the lack of results from ML tech
niques using nearby ground-based reference stations to compare against 
those obtained with reanalysis data. In this regard, it is worth noting that 
the main conclusion of the studies conducted by Brower [45], where 
reanalysis data and direct observations were compared, was that rean
alysis data were not reliable enough for use in MCP methods. However, 
Schwartz et al. [46] carried out an initial assessment of the usefulness of 
including reanalysis data in wind resource evaluation methodologies 
and obtained encouraging results, while emphasizing that unresolved 
issues remain that justify further research. We believe that such com
parisons would be valuable, although to reach broader conclusions a 
more systematic evaluation across multiple sites with diverse terrains 
would be required. This is because the representativeness of results from 
nearby stations depends largely on local orography, which limits their 
generalizability.

In addition, the present study did not explore the multi-output ca
pabilities of ML techniques other than ANN. Although RFs natively 
allow multi-output prediction, and SVR/XGBoost can be extended via 

wrappers, these approaches do not share parameters across outputs and 
are effectively equivalent to training independent models. Assessing the 
potential of such variants, as well as future multitask implementations in 
algorithms beyond ANN, constitutes a promising line of research.

Furthermore, no joint multi-output models were developed for wind 
speed (V) and wind direction (θ). While such an approach could enhance 
physical consistency by modeling both variables simultaneously, it rai
ses important technical challenges. V is a linear target typically opti
mized with squared-error loss, whereas θ is circular and requires 
specialized angular losses. Combining them in a single architecture 
would therefore demand careful balancing of heterogeneous objectives 
or a transformation of θ into its Cartesian components (cosθ, sinθ) to 
avoid discontinuities. For these reasons, V and θ were modeled inde
pendently in this study, but extending multi-output formulations to 
heterogeneous targets remains an important direction for future 
research.

Finally, it should be noted that the comparative behavior of rean
alysis datasets may vary across sites. In the present study, raw MERRA2 
wind speeds were initially closer to the observed values than ERA5, but 
after ML-based bias correction, ERA5 consistently outperformed 
MERRA2. Whether this inversion is a site-specific phenomenon or re
flects a more general pattern remains an open question. Systematic 
comparative studies at other locations, encompassing diverse climatic 
and topographic conditions, would be needed to establish the generality 
of this finding.

Addressing these aspects lies beyond the scope of the present work, 
but they represent promising avenues for future research. Their inclu
sion could complement and expand the approach presented here, further 
strengthening the methodological robustness and applicability of ML- 
based MCP methods.

5. Conclusions

This study shows that machine-learning-based MCP methods can 
substantially improve the reconstruction of long-term wind speed and 
direction at sites with limited on-site measurements. By correcting the 
systematic discrepancies of ERA5 and MERRA-2, the proposed approach 
produces site-adapted wind series that more accurately reflect the 
observed mean values (7.2 m/s vs. 7.13 m/s for wind speed and 4.49◦ vs. 
4.50◦ for direction) and their daily and seasonal variability, achieving a 
correlation of 0.994 for the daily mean cycle.

Among the tested techniques, artificial neural networks consistently 
achieved the best performance, and the combination of ERA5 and 
MERRA-2 yielded the lowest errors across all model variants. The bias- 
corrected MCP models reduced the mean relative error in wind power 
density to 13.9 %, compared with 39 % (MERRA-2) and 63.1 % (ERA5) 
from raw reanalysis data, demonstrating a substantial gain in long-term 
resource representativeness.

The comparison between direct and two-stage MCP formulations 
shows similar overall performance, while the choice of ML technique 
and training-period length has a clear influence on accuracy. These 
findings indicate that the proposed methodology provides a practical 
and robust framework for improving the usability of reanalysis data in 
wind-resource feasibility studies, especially at locations where long- 
term ground measurements are unavailable.
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Appendix A 

A.1. R libraries used

Table A.1 lists the R libraries employed to implement and train the machine learning (ML) models (ANN, SVR, XGBoost, RF).

Table A.1 
R code libraries used for the implementation and training of the different machine learning (ML) techniques

ML Library Reference

ANN torch https://cran.r-project.org/web/packages/torch/index.html
SVR caret https://cran.r-project.org/web/packages/caret/index.html

Kernlab https://cran.r-project.org/web/packages/kernlab/index.html
XGBoost mlr3 https://cran.r-project.org/web/packages/mlr3/index.html
RF mlr3 https://cran.r-project.org/web/packages/mlr3/index.html

A.2. Probability distributions of wind data

This section provides the parameters and goodness-of-fit test results for the wind speed and direction distributions from the target site and 
reanalysis datasets (ERA5 and MERRA2).

Table A.2 reports the parameters and Anderson–Darling (A–D) test results for the wind speed pdfs obtained from the target site and the reanalysis 
datasets (ERA5 and MERRA2). In all cases, the A–D test returned p-values above 0.05, indicating no statistical evidence to reject the null hypothesis of 
similarity between the empirical and fitted distributions. Table A.3 presents the corresponding results for the wind direction pdfs, together with the 
Cramér–von Mises (CvM) test. Although these tests also support similarity, visual inspection reveals noticeable discrepancies, particularly between 
ERA5 and the target site, which highlights the limitations of reanalysis data in capturing local directional patterns.

Table A.2 
Parameters of the wind speed distributions of the data sources and the p-values obtained from the goodness-of-fit test used.

Data sources Parameters A-D statistic p-value

α1 β1 α2 β2 ω

– m s− 1 – m s− 1 – –

MERRA2 2.23 4.45 5.94 8.47 0.478 0.8055 0.931
ERA5 1.97 4.53 4.48 7.25 0.435 0.921 0.933
Target site 1.92 4.73 3.89 10.37 0.416 2.300 0.647

Table A.3 
Parameters of the wind direction distributions generated by the MCP models, and the p-values obtained from the goodness-of-fit 
test used.

MERRA2 ERA5 TARGET

κ1 – 27.5192899 16.8648556 16.179670
μ1 (rad) 1.1565837 0.2536739 0.1117812
ω1 – 0.53855894 0.60876372 0.69480834

κ2 – 4.0460901 2.8216698 1.643063
μ2 (rad) − 2.7217488 − 2.5940214 − 3.1043191
ω2 – 0.05431074 0.06069787 0.07180155

κ3 – 0.3030963 1.4530359 1.137917
μ3 (rad) − 0.6507579 1.1163983 − 1.4023937
ω3 – 0.07373193 0.11668085 0.04990065

(continued on next page)
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Table A.3 (continued )

MERRA2 ERA5 TARGET

κ4 – 2.6728175 0.8041157 2.418890
μ4 (rad) 0.8700034 1.0141130 1.1245219
ω4 – 0.13399201 0.03814863 0.06825952

κ5 – 3.7265521 4.1479544 3.899613
μ5 (rad) 1.3348655 0.2662494 − 0.3872888
ω5 – 0.19940638 0.17570893 0.11522994

CvM statistic ​ 0.2535 0.10399 8.12
p-value ​ 0.65 0.814 0.492

A.3. Distributions generated by MCP models

Tables A.4 and A.5 report the parameters of the wind speed and wind direction pdfs estimated with direct and two-stage MCP models, together 
with the corresponding goodness-of-fit test results. The analysis indicates that direct models tend to reproduce more accurately the global shape of the 
wind speed pdf, whereas two-stage models provide a better adjustment of the wind direction pdf. These results are consistent with the discussion in 
Section 3, where the complementary strengths of both approaches are emphasized.

Table A.4 
Tests and metrics used to compare two wind speed distributions.

Anderson-Darling test. p-values

​ MERRA2 ERA5

Target site A-D = 24; p < 0.001 A-D = 68.8; p < 0.001

Kolmogorov-Smirnov test

Target site K-S = 0.17044; p < 0.001 K-S = 0.30226; p < 0.001

Energy distance test for equality of distributions

Target site E-D = 83.07; p < 0.001 E-D = 275.20; p < 0.001

Wasserstein distance

Target site 1.0131 1.7581

Table A.5 
Statistical tests and metrics used to compare two wind direction distributions.

Cramér-von Mises test. p-values

​ MERRA2 ERA5
Target site CvM = 11026.918; p < 0.001 CvM = 3215.78; p < 0.001

Kolmogorov-Smirnov test
Target site K-S = 0.42876; p < 0.001 K-S = 0.17843; p < 0.001
Energy distance test for equality of distributions
Target site E-D = 22053.836; p < 0.001 E-D = 6431.56; p < 0.001
Wasserstein distance
Target site 1.725 0.9216

A.4. Statistical comparison of distributions

Table A.6 summarizes the outcomes of several tests—including Anderson–Darling, Kolmogorov–Smirnov, Energy distance, and Wasserstein dis
tance—used to compare the pdfs generated by MCP models with those observed at the target site. The reported values confirm that the application of 
MCP substantially improves the agreement between reanalysis-based and observed distributions, both for wind speed and direction, thereby sup
porting the effectiveness of the proposed methodology.

Table A.6 
Best hyperparameters (frequencies of occurrence in parentheses).

Model type Source data Feature target Number of neurons per hidden layer Dropout rate Learning rate

Layer_1 Layer_2 Layer_3 Dropout_1 Dropout_2 Dropout_3

Direct models MERRA2 V 63 (17) 54 (17) 0(17) 0.1120 (17) 0.1791 (17) - (17) 0.001 (23)
159 (6) 104 (6) 53(6) 0.2738 (6) 0.0376 (6) 0.1876 (6)

ERA5 V 63 (6) 54 (6) 0(6) 0.1120 (6) 0.1791 (6) - (6) 0.001 (23)

(continued on next page)
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Table A.6 (continued )

Model type Source data Feature target Number of neurons per hidden layer Dropout rate Learning rate

Layer_1 Layer_2 Layer_3 Dropout_1 Dropout_2 Dropout_3

159 (17) 104 (17) 53(17) 0.2738 (17) 0.0376 (17) 0.1876 (17)
MERRA2&ERA5 V 63 (14) 54 (14) 0(14) 0.1120 (14) 0.1791 (14) - (14) 0.001 (23)

159 (9) 104 (9) 53(9) 0.2738 (9) 0.0376 (9) 0.1876 (9)
MERRA2 θ 63 (1) 54 (1) 0(1) 0.1120 (1) 0.1791 (1) - (1) 0.001 (23)

159 (22) 104 (22) 53(22) 0.2738 (22) 0.0376 (22) 0.1876 (22)
ERA5 θ 63 (1) 54 (1) 0(1) 0.1120 (1) 0.1791 (1) - (1) 0.001 (23)

159 (22) 104 (22) 53(22) 0.2738 (22) 0.0376 (22) 0.1876 (22)
MERRA2&ERA5 θ 159 (23) 104 (23) 53(23) 0.2738 (23) 0.0376 (23) 0.1876 (23) 0.001 (23)

Two-stage models MERRA2 Vx 159 (23) 104 (23) 53(23) 0.2738 (23) 0.0376 (23) 0.1876 (23) 0.001 (23)
Vy 159 (22) 104 (22) 53(22) 0.2738 (22) 0.0376 (22) 0.1876 (22) 0.001 (23)

63(1) 54(1) 0(1) 0.1120 (1) 0.1791 (1) -(1)
ERA5 Vx 159 (23) 104 (23) 53(23) 0.2738 (23) 0.0376 (23) 0.1876 (23) 0.001 (23)

Vy 159 (22) 104 (22) 53(22) 0.2738 (22) 0.0376 (22) 0.1876 (22) 0.001 (23)
63(1) 54(1) 0(1) 0.1120 (1) 0.1791 (1) -(1)

MERRA2&ERA5 Vx 159 (23) 104 (23) 53(23) 0.2738 (23) 0.0376 (23) 0.1876 (23) 0.001 (23)
Vy 159 (22) 104 (22) 53(22) 0.2738 (22) 0.0376 (22) 0.1876 (22) 0.001 (23)

63(1) 54(1) 0(1) 0.1120 (1) 0.1791 (1) -(1)

A.5. ANN architectures and hyperparameters

The ANN models employed in this study correspond to fully connected feed-forward networks with ReLU activation functions in the hidden layers. 
Table A.7 presents the most frequent optimal hyperparameter configurations identified during training, including the number of neurons per layer, 
dropout rates, and learning rate. Fig. A1 illustrates the evolution of the training process and highlights the best epochs selected by early stopping, 
providing additional insight into the stability and convergence of the ANN models.

Fig. A.1. Best epochs detected in the training stages.
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Table A.7 
Parameters of the wind speed distributions generated by the MCP models and the p-values obtained from the goodness-of-fit test used.

Model Data sources Parameters A-D statistic p-value

α1 β1 α2 β2 ω

– m s− 1 – m s− 1 – –

Direct MERRA2 3.097218 3.898027 3.207062 9.158304 0.224331 5.63184197812734 0.678
ERA5 3.128615 3.609815 3.182110 9.119546 0.2189469 5.81914340389994 0.663
MERRA2&ERA5 2.975513 3.655812 3.187744 9.166803 0.2185944 5.7613296060299 0.659

Two-stage MERRA2 2.007278 3.573671 3.705527 9.483398 0.3323665 5.5397650443119 0.737
ERA5 2.007188 3.361209 3.524680 9.393152 0.3036387 4.88330523152035 0.792
MERRA2&ERA5 1.964464 3.431325 3.598121 9.465688 0.3129155 4.49977791657147 0.82

A.6. Additional tests for wind direction

Complementary results for the wind direction pdfs are provided in Tables A.8 and A.9, which include the Cramér–von Mises, Kolmogor
ov–Smirnov, Energy distance, and Wasserstein distance statistics comparing the direct and two-stage MCP models against the target site. These results 
confirm the conclusions presented in the main text, namely that two-stage models offer a superior representation of directional patterns, while direct 
models are more effective for wind speed estimation.

Table A.8 
Tests and metrics used to compare two wind speed distributions.

Anderson-Darling test. p-values
​ Direct model Two-stage model

Target site A-D = 2.21; p = 0.0682 A-D = 2.7; p = 0.0422
Kolmogorov-Smirnov Test
Target site K-S = 0.04261; p = 0.5061 K-S = 0.0479; p = 0.3381
Energy distance test for equality of distributions
Target site E = 6.6743; p = 0.14537 E = 10.21173; p = 0.0664
Wasserstein distance
Target site 0.3049 0.4125

Table A. 9 
Parameters of the wind direction distributions constructed from the data estimated using the two MCP models (direct and two-stage) and the p-values obtained from 
the goodness-of-fit test employed.

Parameters Direct models Two-stage models

MERRA2 ERA5 MERRA2&ERA5 MERRA2 ERA5 MERRA2&ERA5

κ1 – 143.556742 144.679467 117.275420 35.978766 32.023274 30.218896
μ1 (rad) 0.02991201 0.02538258 0.03869844 0.06288515 0.06738307 0.07044619
ω1 – 0.31974868 0.33136176 0.38477353 0.53626463 0.57703988 0.59218436

κ2 – 2.344836 2.361173 2.342035 2.159977 2.293838 2.873558
μ2 (rad) 1.46360509 1.35368931 1.41956171 − 2.71862142 − 2.65891637 − 2.76626113
ω2 – 0.06645413 0.08224934 0.08782369 0.06344519 0.05862097 0.05110372

κ3 – 1.241879 1.901517 11.836226 1.349540 1.467506 1.624546
μ3 (rad) − 0.95676818 − 0.22650858 0.18919369 1.40986160 1.62558722 1.59177336
ω3 – 0.10631832 0.16973824 0.17321678 0.06699457 0.06547607 0.06717850

κ4 – 2.567656 17.030297 1.513234 2.606945 2.519059 2.617477
μ4 (rad) 0.06741906 0.16551743 − 0.90421319 − 0.45238071 − 0.53139667 − 0.68706373
ω4 – 0.19992365 0.33729302 0.14426601 0.11093712 0.10444880 0.10495889

κ5 – 17.673995 1.080062 6.951453 10.360101 9.351302 8.686815
μ5 (rad) 0.14773743 − 0.91309823 0.11365550 0.24275401 0.26740822 0.26607832
ω5 – 0.30755522 0.07935764 0.20991999 0.22235850 0.19441426 0.18457453

CvM statistic ​ 0.3930 0.792 0.4974 0.5703 1.359 0.5299
p-value ​ 0.9 0.556 0.858 0.766 0.562 0.704
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Table A.10 
Tests and metrics used to compare two wind direction distributions.

Cramér von Mises test. p-values
​ Direct model Two-stage model
Target site CvM = 118.59; p = 0.21096 CvM = 74.57; p = 0.3363
Kolmogorov-Smirnov test
Target site K-S = 0.10919; p < 0.001 K-S = 0.06258; p = 0.1046
Energy distance test for equality of distributions
Target site E = 237.18; p = 0.2106 E = 149.14; p = 0.3433
Wasserstein distance
Target site 0.1372 0.1317
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[24] J.A. Carta, S. Díaz, A. Castañeda, A global sensitivity analysis method applied to 
wind farm power output estimation models, Appl. Energy 280 (2020) 115968, 
https://doi.org/10.1016/j.apenergy.2020.115968.

[25] J.A. Carta, C. Bueno, P. Ramírez, Statistical modelling of directional wind speeds 
using mixtures of von Mises distributions: case study, Energy Convers. Manag. 49 
(2008), https://doi.org/10.1016/j.enconman.2007.10.017.

[26] RalphB. D'Agostino, Goodness-of-Fit techniques, goodness-of-fit techniques. 
https://doi.org/10.1201/9780203753064/GOODNESS-FIT-TECHNIQ 
UES-RALPHB-AGOSTINO, 2017.
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