Renewable Energy 261 (2026) 125280

Contents lists available at ScienceDirect
Renewable Energy

AN INTERNATIONAL JOURNAL

o in i Nidis Caetan

Renewable Energy

journal homepage: www.elsevier.com/locate/renene

FI. SEVIER

Transformation of reanalysis data for improved long-term estimation of
wind speed and direction at a target site

José A. Carta, Pedro Cabrera

Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain

ARTICLE INFO ABSTRACT

Keywords:
Measure-correlate-predict method
Machine learning techniques
Reanalysis data

Wind speed

Wind direction

Wind power density

This paper proposes the use of measure-correlate-predict (MCP) methods based on supervised machine learning
(ML) techniques to transform reanalysis data from ERA5 and MERRA2, aiming to improve the long-term esti-
mation of wind speed and direction at locations with limited on-site measurements. The study analyzes models
that directly estimate the target variables—wind speed and direction—as well as two-stage models that first
estimate the Cartesian components of wind velocity and subsequently transform them into polar coordinates.

As a case study, hourly mean wind data recorded between 2001 and 2023 at 10 m above ground level are used.
The data were collected from an anemometric station located on the island of Gran Canaria (Canary Archipelago,
Spain).

Key findings include the following: (a) Reanalysis data underestimate actual wind speeds and fail to
adequately represent the mean wind direction; (b) although reanalysis data poorly represent the daily wind
speed profile, the MCP model significantly corrects this, achieving a Pearson correlation of 0.994; (c) the MCP
method minimizes the differences between observed and estimated values (7.2 m/s vs. 7.13 m/s, and 4.49° vs.
4.50°, respectively); (d) the combination of ERA5 and MERRAZ2 consistently yields the lowest estimation errors,
regardless of model type; (e) artificial neural networks outperform other ML techniques in all scenarios; and (f)
the proposed method reduces the mean relative error in wind power density estimation to 13.89 %, compared to
43 % and 63.1 % using MERRA2 and ERAS alone, respectively.

1. Introduction

The accurate estimation of wind resource characteristics at a target
site (TS) is essential for energy system planning and the development of
economically viable wind farms [1]. When conducting feasibility studies
for the installation of a wind farm at a target site, it is necessary to es-
timate the energy that will be generated by the wind farm over the
course of its lifetime [2]. According to Landberg et al. [3], a minimum of
5-10 years of data is required to assess the long-term wind resource.
Hiester and Pennell [4] emphasize that at least 10 years of measure-
ments are essential to accurately estimate mean wind power at a target
site.

Several authors have highlighted that long observational records are
required to characterize the full temporal variability of the wind
resource. Burton et al. [5] stress that multi-year and even multi-decadal
datasets are desirable for defining a reliable wind climate. Baker et al.
[6] quantified annual and seasonal variations in mean wind speed and
wind turbine energy production using long-term records. Klink [7]
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analyzed 22-35-year series at several stations in Minnesota and showed
that trends and interannual variability can markedly affect the distri-
bution of wind speeds. Yet, in practice, such long-term datasets are
rarely available at target sites, where typically only short-term mea-
surement campaigns—often limited to one year or even a few month-
s—are feasible due to time and cost constraints.

In general, at least one year of data is required to capture the sea-
sonal behaviour of wind. In Brazil, as noted by Miguel et al. [8], the
extension of measurement campaigns from 24 to 36 months in 2017
reflects a stronger commitment to capturing wind variability and
improving resource assessment accuracy.

The availability of long-term data series is often limited by the high
cost of resource measurement campaigns and the urgency to obtain this
information within a short timeframe to initiate the necessary proced-
ures for the installation and commissioning of the wind farm. To address
this challenge, both the scientific literature and the wind industry have
adopted measure-correlate-predict (MCP) methods [9]. To estimate the
long-term wind resource at a target site, MCP methods use the
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short-term data that is available for that site in combination with
long-term data obtained from nearby meteorological stations.

In situations where suitable reference meteorological stations are
unavailable, several studies have examined the direct use of reanalysis
products for wind-resource assessment. Olauson [10] showed that ERA5
provides substantially improved temporal consistency and reduced bias
compared to earlier reanalyses, making it a strong candidate for
long-term wind modelling. Rabbani and Zeeshan [11]evaluated
MERRA-2 for wind-energy applications in Pakistan and found that,
although regional patterns are well reproduced, local discrepancies
persist. Pryor and Barthelmie [12] analyzed extreme wind speeds
globally and highlighted marked regional differences in reanalysis per-
formance, which are particularly relevant for wind-energy design. Cai
and Bréon [13] a [13] ssessed wind-power potential in climate-change
scenarios and noted that reanalysis datasets capture large-scale signals
but may miss finer-scale features. Gormiis et al. [14] analyzed
multi-decadal offshore wind characteristics in the Mediterranean using
reanalysis data, demonstrating their usefulness for long-term resource
estimation while acknowledging site-specific limitations. Climate rean-
alyses combine historical measurements from various observation sys-
tems with numerical prediction models to produce time series records of
multiple climate variables on global or regional three-dimensional grids.

According to Watson [15] and Sheridan et al. [16], two of the most
well-known global reanalyses used in renewable energy resource anal-
ysis are the Modern-Era Reanalysis for Research and Applications
(MERRAZ2) [17] and ERAS [18]. MERRA2, produced by NASA's Global
Modeling and Assimilation Office, provides hourly wind speeds at three
heights above ground level: 2 m, 10 m, and 50 m. ERAS5, a global climate
reanalysis product developed by the European Centre for
Medium-Range Weather Forecasts, offers hourly mean wind speeds at
two heights above ground level: 10 m and 100 m.

Gualtieri [19] carried out a critical review of the state of the art on
the uncertainties associated with the direct use of reanalysis data for
wind resource assessment. The author highlights that reanalysis data
(particularly from ERAS) are sufficiently reliable for offshore and flat
onshore sites. However, he also indicates that at certain sites the rean-
alysis data may differ significantly from the actual measurements at the
site of interest. Samal [20] compared wind speed data measured on a 50
m mast to data from MERRA2 in the state of Odisha (India), observing
significant discrepancies in hourly, monthly, and seasonal variations.
However, no study was conducted on wind directions, nor were any
suggestions made as to how to improve the usability of the data avail-
able in MERRA2 [20].

In this context, MCP methods present an opportunity to establish,
over a short training period, the relationship between reanalysis data
used as a reference and wind data recorded at a selected ground site. The
goal is to transform the reanalysis data to more accurately reflect the
real long-term behavior of the wind speed and direction at the selected
ground site.

1.1. Aims and originality of this paper

This study proposes a novel approach to reconstructing the historical
(long-term) behaviour of wind speed and direction at a target site when
only limited short-term measurements are available. The reconstructed
series provide a consistent representation of the past wind regime-
—including its daily, seasonal and interannual variability—which is
essential for estimating the long-term energy production of a wind tur-
bine installation. The methodology relies on the use of reanalysis data-
sets (ERA5 and/or MERRA?2) as the reference source from which the
long-term series are reconstructed. This is particularly relevant
because, although widely used, reanalysis products do not always
reproduce local observations accurately and therefore require bias
correction before they can be employed with confidence. Within this
framework, the proposed approach also enables an assessment, for a
given site, of which reanalysis dataset (ERA5, MERRA2 or their
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combination) is most suitable once corrected through ML-based MCP
models. The main contributions and original aspects of the work are
summarized below:

i. Exploration of direct and two-stage MCP models for handling
linear and circular variables. Beyond the conventional two-
stage approach—where wind's Cartesian components (x and y)
are estimated first and subsequently converted into polar co-
ordinates (magnitude and direction) [21] —this study also em-
ploys MCP models that directly predict wind speed (a linear
variable) and wind direction (a circular variable [22]). The
objective is to determine which strategy (direct or two-stage) is
more suitable for estimating wind speed and direction. Within the
two-stage framework, two variants are analyzed for the first time:
single-output models, where each wind component (Vx and Vy)
is predicted by an independent model, and dual-output models,
where both components are estimated simultaneously by a single
model. To the best of our knowledge, this comparative analysis
has not been previously conducted.

ii. Evaluation of different ML techniques within MCP methods.
Several of the most commonly applied supervised ML techniques
in MCP contexts—RF, SVR, XGB, and ANN—are systematically
tested in order to identify which method provides the most
effective bias correction and the most robust long-term pre-
dictions. This comparative perspective is essential because the
choice of ML technique can significantly affect model perfor-
mance, yet it has received little attention in previous MCP studies
using reanalysis data.

iii. Comprehensive assessment of training period length and
selection. All available years in series (2001-2023) were rotated
as training periods, with the remaining years used for testing. An
analogous procedure was applied for 2, 3, and 4 years of training
(e.g., 2001-2002 for training and 2003-2023 for testing, and so
on), enabling an extensive evaluation of how both the duration
and the specific choice of the training period affect model per-
formance. The results obtained for 1, 2, 3, and 4 years are pre-
sented and discussed, with emphasis on the practical implications
for planning measurement campaigns and for the applicability of
the models in sites with limited on-site data.

2. Method and meteorological data

A block diagram illustrating the proposed method, covering the
process from data collection to result analysis, is shown in Fig. 1.

2.1. Overview of the method

The first task in the process is the collection of data from the selected
sources, which in this case include reanalysis data from MERRA2 and
ERAS as well as data recorded by a ground-based anemometric tower.

The second task focuses on comparing the data from the three
sources to identify potential discrepancies between them. In this task,
wind speed, wind direction, and mean wind power density data from the
TS are compared with the corresponding data from the reanalysis
sources.

The third task involves the selection of four ML techniques. Using
each technique and with data from the reanalysis sources (individually
and combined), two types of MCP models are constructed. The first type,
referred to as direct prediction models, directly estimate wind speed (a
linear variable) or wind direction (a circular variable). The second type,
known as two-stage models, firstly predict the Cartesian x and y com-
ponents of the wind and then determine its polar coordinates (i.e., the
modulus of the wind speed and its direction). Within the two-stage
approach, we considered two variants: (i) single-output models,
where independent models are trained for Vy and Vy, and (ii) dual-
output models, where a single model simultaneously estimates both Vy
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Fig. 1. Schematic representation of the process used to estimate long-term wind speed and direction at a target site using MCP methods with reanalysis data as input.

and Vy.

The fourth task analyzes the error and association metrics obtained
from the different models. The fifth task examines the trend in error and
association metrics as the number of years used for training and data
validation increases.

2.2. Task-1: data collection

The data collected from the reanalysis sources are maintained in
their original format. Specifically, for the period from January 1, 2001,
to December 31, 2023, the recorded variables include the date (year,
month, day, and time) and the Cartesian components of wind speed (Vy

and Vy, in m/s) at a height of 10 m above ground level. For the ground-
based source, the meteorological variables recorded are wind speeds (V,
in m/s) and directions (0, in degrees), measured using a cup anemometer
and a wind vane installed on an anemometer tower at a height of 10 m
above ground level. This tower is located on the island of Gran Canaria
(Canary Archipelago, Spain) at UTM coordinates 27° 55' 04" N latitude,
15° 23' 43" W longitude. If necessary, the Cartesian components of wind
speed (Vx and Vy) are converted to polar coordinates (V and 6). North is
defined as 6 = 0°, and clockwise rotation is considered positive. To
calculate V and 6, Eq. (1) and Eq. (2) are used.

V=4/V® +V,° 1)
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Similarly, when using two-stage models, the wind speed modulus (V)
recorded at the ground-based anemometer station is decomposed into its
Cartesian components: V, = V sin(@) and V,, = V cos(0).

2.3. Task-2: Comparison of ground and reanalysis data

The comparison of the data obtained from the three sources is per-
formed from four perspectives: a) From the perspective of the frequency
distributions of wind speeds and directions; b) From the perspective of
the seasonal and daily evolution of wind speed; c) From the perspective
of the differences in mean wind power densities; and d) From the
perspective of local accuracy.

2.3.1. Comparisons between probability density functions

To facilitate the evaluation of the differences between the probability
histograms, the corresponding probability density functions are deter-
mined. In this context, the univariate continuous parametric probability
density functions used are specific to the two types of variables: wind
speed and wind direction:

a) For the wind speed (V), the two-component mixture Weibull distri-
bution, whose probability density function is given by Eq. (3) [23].

5 (- ) (- )
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the modified Bessel function of the first kind and order zero [25], and «;
> 0 and 0<y; < 2r are real parameters.

M
0<w;<1; (j=1,...,M)and Za)jzl 5)
=1

The maximum likelihood method [23] is used to estimate the pa-
rameters of the different distributions. The Cramér-von Mises (CvM) test
is used to test the goodness-of-fit of the distributions of circular variables
to the experimental histograms, and the Anderson-Darling (A-D) test in
the case of the distributions of linear variables [26].

Three tests are employed to compare the global reanalysis wind
speed distributions with the global TS wind speed distribution: the A-D
test [26], the Kolmogorov-Smirnov (K-S) test [26], and the energy dis-
tance (E-D) test for equality of distributions [27]. The E-D metric is
particularly useful when the distributions are not normally distributed
or have unequal variances. This test calculates a statistic based on the
mean distance between points within and between samples [27].

To compare the reanalysis wind direction distributions with the TS
wind direction distribution, the same tests are applied, except that the A-
D test is replaced with the CvM test [26].

In addition, the Wasserstein distance (WD) metric, also known as the
optimal transport distance or earth mover's distance [28], is used to
analyze the geometric similarity between the global distributions of
wind speeds and directions in the TS data and those provided by ERA5
and MERRA2. If F and G are the cumulative distribution functions
(CDFs) of two distributions, the metric is defined as shown in Eq. (6). We
set p = 1, as our goal is to analyze general differences.

W, (F, G) = ( [ iFe —G(xwdx)”p ©

2.3.2. Comparisons of wind speed seasonal variations and daily means
The degree of correlation between wind speed seasonal variations

and daily means is determined using Pearson's correlation coefficient, as

defined in Eq. (7). This metric is widely used in MCP methods [9].

=1 Perfect positive linear relationship

r = —1 Perfect negative linear relationship . 7)

r=
N PN
\/ > (xi - Z;jlxl) \/ i (yi — Q) =0 No linear relation (though non — linear relations may exist).

PDFV(V,al,ﬁl,az,ﬂz,w)—w|:;I<ﬁ1,)1) 767(/}_1) :|

a-1 _ | X
+(1-w) “—(1) e <’) ®

P \B

where 0 <o < 1 is a mixture parameter, o; > 0 and oy > 0 are shape
parameters and f; > 0 and P2 > O are scale parameters.

b) For the circular variables (0), a finite mixture of M = 5 von Mises

distributions [24] whose probability density function is given by Eq.
(4):

PDFH(H, K,-,ﬂj,w,-) - iﬁexp {Kj cos(@—y}.)} L0<6<21 (4
=1

where the w; are nonnegative quantities that sum to one, Eq. (5), Io(x;j) is

In Eq. (7), x; and y; are the individual values of two variables X and Y,
respectively.

2.3.3. Comparison of mean wind power densities

The mean wind power densities (WPD) are estimated using Eq. (8)
[29].

1 &
WPD=__ > i ®
n i=1

In Eq. (8), p; are the air densities. Most authors [30,31]use Eq. (8),
assuming that air density is constant over time, and employ the standard
value of 1.225 kg m~3, corresponding to standard atmospheric condi-
tions (completely dry air, and mean pressure and air temperature at sea
level of 1013.25 hPa and 15 °C, respectively).

2.3.4. Analysis of the accuracy of wind speed and direction data
The errors generated when representing the TS variable data using
reanalysis variable data are analyzed. For linear target variables (wind
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speed), the error and association metrics used are the mean absolute
error (MAE), Eq. (9), the root mean squared error (RMSE), Eq. (10), and
the coefficient of determination (Rz), Eq. (11), as these metrics are
widely used in wind resource estimation [21]. The RMSE is used to
evaluate large deviations, while the MAE is more robust to outliers. In
this task, R? serves as a measure of how much of the variability in the TS
data is explained by the reanalysis data.

1 <& ~

MAE:;Z‘M‘*%‘ ©)

i1
RMSE = % Z i —y)° (10)

i=1

n no_ 2

> <)’i - —Zil’lyl>
R2=1-=2 11

Z (.yi _yl)z

In Eq. (9), Eq. (10), and Eq. (11), y; is the observed (true) value, y; is the
predicted value, and n is the total number of observations.

For circular target variables (wind direction) defined within the
range [0°,360°], it is crucial to use specific error metrics that account for
the circular nature of the data. To address this, the Circular_Difference
function is defined in Eq. (12). Based on Eq. (12), custom metrics,
referred to as RMSE _Circular (Eq. (13)) and MAE _Circular (Eq. (14)), are
introduced.

CircularDifference(6;, 8;) = min(|6; — 6;, 360° — |6; — ;) 12)
1 & 2
RMSECircular = H Z [ClrcularDifference(ﬂi.9[)] (13)
i=1
1 &
MAECircular = ; Z |ClrcularDifference((}l.()1) | (14)

i=1

In Eq. (12), Eq. (13) and Eq. (14), 6; is the observed (actual) value, @i iis
the predicted value, and n the total number of observations. The degree
of association between wind directions is estimated with the circular-
circular correlation coefficient of Jammalamadaka and Sarma [32],
Eq. (15). The original formulation was proposed by Jammalamadaka &
Sarma [32], and is described in detail by Jammalamadaka & SenGupta
(2001) [33].

>t sin(g; — $)-sin(¢p;, — P)
\/( é Sin2(¢i - E)) '(Z?:l Sinz(((ﬂi - @)))

r.= (15)

In Eq. (15), (¢1,¢1); ---, (¢n, @,) represent the samples of n data from the
directions (in radians) of two sources and ¢ and ¢ are the sample mean
directions, Eq. (16), [33].

¢=atan2 (isin(q&i),zn: cos(¢i)> ;p=atan2 (isin(qoi), En:cos((pi)>
i=1 i=1 i=1 i=1
(16)

These global error and association metrics (MAE, RMSE, MAE _Cir-
cular, RMSE _Circular and r.) are standard in MCP applications. They
quantify how effectively the MCP models reduce the discrepancies be-
tween reanalysis datasets and local observations and are widely used in
the literature to evaluate the performance of MCP-based reconstructions
of long-term wind conditions
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2.4. Task-3: Training, test and validation of the different MCP methods
based on ML techniques

The proposed models for estimating the target variables were
developed using multiple regression, Eq. (17).

MERRA2 ERAS

Yt :f(Xr) :f Vx,u Vy‘ry Vr 5 Vx.n Vy,u Vr ch, H57 sm Ss (17)

In the functional forms of the model, X = (X, ...,Xd)T are the input
variables, the subscript t indicates the instant evaluated, and Y, = (V, 0,
Vy or V) represents the estimated response variable V, 6, V or V, of the
TS. H, and H;, are harmonic transformations of the hour of the day (H),
while S. and S denote harmonic transformations of the seasonal cycle.
These transformations allow the models to capture cyclic patterns and
avoid artificial discontinuities that could be misinterpreted by ML
techniques.

Two alternative formulations were considered for the seasonal cycle:
Eq. (18), based on the month M, i.e. a monthly harmonic, and Eq. (19),
based on the day of year d, i.e. a daily harmonic.

2nH . (2nH 2rM . (2xM
H.=cos (ﬂ) ; Hy =sin <§) ; Sc =cos (f) ; Sy =sin (ﬁ)

18

2rH . (2nH 2rd . (2nd
H.=cos (ﬁ) ; Hy=sin <§> ; Sc =cos (ﬁ) ; Sg=sin (ﬁ)
19

The function Y, = (V, 0,V, or Vy) is valid for estimating each of the
target variables. Input variables can be drawn from a single reanalysis
data source (MERRA2 or ERA5) or simultaneously from both data
sources (MERRA2 and ERAS).

A broader discussion of alternative methodological options,
including additional variables, spatial extensions, and other comple-
mentary approaches, is provided in Section 4 (Limitations).

Fig. 2 presents a block diagram that schematizes the training, vali-
dation, and testing processes for the various MCP models using the
different ML techniques considered.

The process is summarized in three steps, each represented by a
number enclosed in a circle. The first step involves determining the
optimal hyperparameters for the model under consideration. The data
are divided into K = 5 folds to train and evaluate the model using cross-
validation, ensuring robustness and minimizing the risk of overfitting. In
each iteration, one-fold is used as the validation set, while the remaining
folds are used for training. Next, the model is defined using the selected
ML technique, and the error metric to be employed in the training and
validation process of the MCP model is specified.

The proposed ML techniques are as follows [34]: random forest (RF),
selected for its robustness against overfitting [35] and its strong per-
formance in previous MCP studies [36]; extreme gradient boosting
(XGBoost), chosen for its high accuracy and computational efficiency
[34]; support vector regression (SVR), included for its effectiveness in
solving regression problems with complex and nonlinear relationships,
as well as its strong results in previous MCP research [29]; and artificial
neural network (ANN), utilized for its ability to learn complex patterns
and its extensive application in MCP problems [37].

In the case of circular target variables, the custom metric RMSE -
Circular, Eq. (12), is used to account for the circular nature of the target
variables. This metric is directly employed as an evaluation criterion
during the model training and validation process.

For each ML technique used, the hyperparameter search space is
defined, meaning that key values are explored to optimize model
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Variables used in each model

Steps to build, validate and test MPC models
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Fig. 2. General configuration of the methodological procedure followed.

performance. In the case of RFs, the hyperparameters explored include
the number of trees (num.trees), the number of randomly selected var-
iables in each split (mtry), and the maximum depth of the trees (max.
depth) [38].

In the case of XGBoost, the hyperparameters defined include the
number of trees (nrounds), learning rate (eta), maximum tree depth
(max_depth), instance and feature subsampling (subsample, colsam-
ple_bytree), and regularization parameters (gamma, lambda, and alpha)
[38]. For SVR, different values of the key parameters (C and c) are tested
using a predefined grid [38]. For ANN, combinations of hyper-
parameters are explored, including the number of hidden layers (be-
tween 1 and 3), the number of neurons per layer (between 10 and 200),
the dropout rate in each layer (between 0 and 0.5), the learning rate

(0.001, 0.0001, or 0.00001), and the number of epochs (with a
maximum value of 1000). The random selection of hidden neurons is
programmed to follow a pyramidal shape, where the number of neurons
decreases from the first to the last layer. This structure adheres to the
so-called geometric pyramid rule [39]. The early stopping parameters
are also defined as follows: patience, the number of epochs without
improvement before stopping training, is set to 10; and min_delta, the
minimum change in RMSE improvement, or RMSE _Circular, considered
significant, is set to 103

The artificial neural networks used in this study are fully connected
feed-forward multilayer perceptrons. Hidden layers employ the ReLU
activation function, while the output layer is linear for V, Vy, and Vy, and
adapted to circular metrics for 0. Training was performed using the
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Adam optimizer together with early stopping, as described above.

To ensure comparability across ML techniques, hyperparameter
combinations were generated through a randomized but controlled
procedure and stored in catalogs for reproducibility. This guarantees
that each technique was explored under equivalent conditions, avoiding
biases due to unequal search spaces. In the case of ANN, catalogs were
created separately for the direction task and for the other targets, with
adjusted ranges, while maintaining the pyramidal constraint on the
number of neurons.

In XGBoost and RF, data standardization is not required due to the
nature of the underlying algorithms. However, for SVR and ANN data
preprocessing is necessary to ensure that the predictor variables are on
the same scale and to facilitate optimal model performance. For these
models, the training data are standardized (centered and scaled), and
the same transformation parameters are applied to the validation and
test data. In addition, for ANN and SVR the target variables were also
standardized during training and subsequently rescaled to their original
units for the computation of evaluation metrics.

Initially, each target variable (V, 6, Vy, Vy) was estimated with an
independent model, in order to maintain methodological consistency
across all ML techniques. This choice is particularly relevant because V is
a linear variable, whereas 6 is circular and requires dedicated loss
functions and validation metrics, which are not natively implemented in
most ML frameworks.

Each ML technique optimizes a specific loss function during training.
For RF, the splitting criterion is based on minimizing the variance within
nodes, which is equivalent to squared error loss in regression tasks. For
XGB, the default squared error objective was used. For SVR, training is
based on the e-insensitive loss, which penalizes deviations larger than ¢
while ignoring smaller residuals. For ANN, the loss function corresponds
to the mean squared error (MSE) for linear variables, while for circular
variables (0) a circular loss based on the minimum angular difference
between observed and predicted values was implemented. In the case of
dual-output ANN models (Vy and Vy), the losses of both outputs were
combined either as an unweighted mean or as a variance-weighted
mean, as detailed above.

In the case of ANN, however, we also implemented dual-output
models for Vy and Vy in order to directly compare their performance
against the single-output approach. For these dual-output ANN models,
two alternative strategies were tested for combining the losses of both
outputs: Unweighted mean, Eq. (20) and Variance-weighted mean, Eq.
@n.

L= (Ly,+ ) 20)
po g N @1
C / 4 — X L + C ,/)
of +ab, " " T af +af, "

where <y, and £y, denote the mean squared error for each component,
ando?_and a‘z,y are their sample variances in the training set. The second

formulation ensures that the more variable component exerts propor-
tionally greater influence during optimization.

While ANNs allow for true multi-output designs with shared pa-
rameters, the situation differs for the other ML techniques considered.
RF in scikit-learn natively support multi-output regression, since each
tree leaf can store a vector of values. Nevertheless, this option was not
used here in order to maintain methodological comparability across
techniques. For SVR and XGBoost, no native multi-output regression
implementation is available. Their extension to multi-output relies on
wrappers such as MultiOutputRegressor, which simply train an inde-
pendent model for each target variable without parameter sharing or
reduction in overall complexity. For this reason, in this study the multi-
output formulation was restricted to ANNs only.

Although this study tested dual-output ANN models for the linear
components Vx and Vy, no joint multi-output design was implemented
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for V and 6. This decision is motivated by their heterogeneous statistical
nature: V is a linear variable, usually modeled with squared-error loss,
whereas 0 is circular and requires specialized losses based on angular
differences. Combining both targets in a single training process would
demand a careful weighting or normalization of such heterogeneous
losses, and may even require transforming 6 into its Cartesian compo-
nents (cos0, sind) to avoid discontinuities. Given these technical chal-
lenges, and to ensure methodological comparability across ML
techniques, V and 6 were modeled independently in this study.

In step 2, the model is trained with the best parameters and evaluated
using all available short-term data. For the evaluation, we use the
metrics MAE, (Eq. (8)), RMSE (Eq. (9)), and R? (Eq. (10)) for the linear
target variables, and MAE _Circular (Eq. (13)), RMSE _Circular (Eq. (12)),
and r. (Eq. (14)) for the circular target variables. Table A.1 in Appendix
A lists the main R libraries used to define and train each ML technique. In
step 3, the best model (with the best parameters) is applied to estimate
the values of the long-term target variable.

2.5. Task-4: Analysis of results using statistics metrics

The differences in the metric values obtained by the different MCP
models analyzed are evaluated.

In addition to the comparative analysis from the perspective of local
accuracy, this task includes, as in Task-2, a comparison between the data
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Fig. 3. Algorithm used to select training and test years, reference data sources
and models trained, validated and tested with each ML technique.
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measured at the TS and the data estimated by the best MCP models. The
comparison is made from the following perspectives: (a) frequency
distributions of wind speeds and directions; (b) seasonal and daily
evolution of wind speed; and (c) differences in mean wind power
densities.

2.6. Task-5: Analysis of performance

The steps outlined in Fig. 2 are performed using one year of data for
training (short term) and the remaining years for testing (long term).

Fig. 3 shows the algorithm employed for this process, which achieves
its objective when Y = 1. In this task, the goal is to analyze the effect on
the error and association metrics of the number of years used for training
and validation. The algorithm depicted in Fig. 3 represents the proced-
ure followed to achieve this, with the objective reached when Y = 4.

3. Results and discussion

This section presents the results of the analyses conducted based on
the tasks described in the methodology, as outlined in Fig. 1.

3.1. Task-2: Comparison of the data collected in the three data sources
(ground and two different reanalysis data)

The following subsections present and analyze the results obtained in
Task-2 from the perspectives outlined in Fig. 1.

3.1.1. Probability density functions of wind speed and wind direction

The comparison between the probability distributions of wind speeds
at the TS and those derived from ERA5 and MERRA2 (Fig. 4) reveals
statistically significant differences (Table A.2). The observed series
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exhibits a bimodal regime, whereas both reanalyses show unimodal
distributions with lower means (7.2 m/s at the TS, 6.6 m/s in MERRA2,
and 5.5 m/s in ERAS). These results demonstrate that both reanalyses
systematically underestimate the mean wind speed at the site.

Linear correlations between reanalysis data and the TS are moderate
(r =~ 0.72-0.74), while ERA5 and MERRA2 are highly correlated with
each other (r = 0.92). It should be noted that these correlations were
calculated from the hourly wind speed series used to construct the his-
tograms, rather than directly from the histograms.

Regarding wind direction, Fig. 5 shows marked discrepancies be-
tween reanalyses and on-site measurements, with predominant patterns
poorly represented. Table A.3 reports the parameters of the fitted wind
direction distributions and the p-values of the goodness-of-fit tests. The
circular—circular correlation coefficients are very low, and in some cases
even negative, between MERRA2 and ERA5 and between MERRA2 and
the TS. The coefficient proposed by Jammalamadaka and SenGupta [33]
is a robust measure: small or negative values indicate the absence of a
simple circular-linear relationship, although they do not rule out more
complex dependencies influenced by other factors [22].

Detailed statistical tests (A-D, K-S, E-D, and CvM) and distance
metrics (WD) quantifying differences between distributions are pro-
vided in Appendix A (Tables A.4 and A.5). These results confirm that the
ERA5 and MERRA2 distributions differ significantly from those
observed at the TS. Altogether, these discrepancies highlight the limi-
tations of using raw reanalysis data to represent local wind conditions
and provide the rationale for applying ML-based MCP models in the
following tasks.

3.1.2. Wind power densities
The absolute percentage error (APE) obtained between the (WPD)
calculated using TS wind speeds and those calculated with MERRA2 and

Correlation coefficient
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Fig. 4. Histograms and probability density functions of wind speeds recorded in: (a) MERRA2, (b) ERA5, and (c) the target site. The correlations were calculated

from the hourly wind speed series used to construct the histograms.
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Fig. 5. Histograms and probability density functions of wind directions recorded in: (a) MERRA2, (b) ERAS5, and (c) the target site. The correlations were calculated

from the hourly wind direction series used to construct the histograms.

ERA5 wind speeds (Eq.(21)) were 39 % and 63.1 %, respectively. The
mean WPD is an important indicator of wind energy potential and is
commonly included in regional wind resource maps as valuable pre-
liminary information to identify potentially attractive sites for wind
project installations [29]. In this context, the APE values indicate sig-
nificant percentage differences between the reanalysis data and the TS
data. These findings align with the results reported by Samal [20] in his
study using MERRA2 data and measurements recorded in the Indian
state of Odisha.

x 100 21

APE = \WPDys — WPD, i
TS Reanalysis(MERRA2 or ERA5 WPDTS

3.1.3. Seasonal and daily wind speed variation

Fig. 6 shows the mean daily wind speeds derived from the three data
sources. The Pearson correlation coefficients reveal a very weak rela-
tionship between the reanalysis datasets and the TS, indicating that
MERRA2 and ERAS5 do not reproduce the actual daily wind speed pro-
file. This emphasizes the need for model-estimated data to approximate
the real daily cycle and to capture seasonal patterns more accurately.

Such improvements are essential in applications where the hourly
wind-power profile must be realistically represented. One study [40]
demonstrated that accurate hourly wind data are crucial for the optimal
sizing of stand-alone wind-powered desalination systems. Another work
[41] showed that realistic temporal wind profiles are also required when
assessing the carbon footprint of desalination processes in island grids
with limited flexibility.

The seasonal evolution of monthly mean wind speeds is presented in
Fig. 7. All three data sources show the highest values in June, July, and

August, but during these months the differences between reanalysis and
TS are most pronounced. In general, reanalysis data consistently un-
derestimate the observed wind speeds. Nevertheless, the Pearson cor-
relation coefficients between the monthly mean values at the TS and
those from MERRA2 and ERAS are 0.929 and 0.949, respectively, con-
firming a strong relationship in the representation of seasonal
variability.

These results confirm that raw reanalysis data fail to reproduce the
local daily wind cycle and systematically underestimate seasonal wind
speeds, even though the overall seasonal trends are well captured. Such
discrepancies highlight the need for bias-correction methods, which will
be addressed through the ML-based MCP models evaluated in the
following sections.

3.1.4. Local accuracy

Table 1 shows the error and correlation metrics obtained by
comparing reanalysis wind speed and direction data with TS measure-
ments. For wind speeds, ERA5 shows higher MAE and RMSE values than
MERRAZ2, but also a slightly higher R? (54.3 % vs. 52.0 %). For wind
directions, ERA5 achieves lower MAE and RMSE errors and a higher
correlation coefficient rcr_crc than MERRA2.

These results indicate that, although both reanalysis datasets contain
useful information, their direct use is affected by substantial errors in
both speed and direction. This reinforces the need for bias-correction
methods to fully exploit the potential of reanalysis data. In the next
sections, ML-based MCP models are applied precisely to address these
discrepancies.
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3.2. Training, test and validation of the different MCP methods using ML

(Task —3)

Table 2 presents the mean values of the metrics obtained during the
testing process (long term) for the two types of MCP models (direct and

10

single-output two-stage models) and the three data sources (MERRA2,
ERA5, and MERRA2 & ERAS5) using each of the ML techniques consid-
ered (RF, XGBoost, SVR, and ANN).

Artificial neural networks (ANN) consistently achieve the lowest
errors (MAE, RMSE, MAE Circular, RMSE Circular) and the highest
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Table 1
Error and association metrics between TS data and reanalysis data.

Sources Wind speeds Wind directions
MAE RMSE R? MAE RMSE T
(m/s) (m/s) (%) (degree) (degree)
MERRA2- 2.05 2.61 52.00 67.3 75.1 —0.0967
TS
ERAS-TS 2.38 3.05 54.30 27.62 43.11 0.2575

coefficients of determination (R? and r.) in almost all configurations,
confirming their superior ability to capture the nonlinear relationships
between reanalysis inputs and local wind conditions. While RF and
XGBoost occasionally perform comparably for wind speed estimation in
direct models (as confirmed by Wilcoxon tests), ANN remains the only
technique that systematically excels for both linear and circular targets.

For wind speeds, direct models tend to provide slightly lower global
errors, while two-stage models capture directional behavior more
accurately, yielding higher circular correlations. This complementarity
highlights the importance of evaluating both approaches when cor-
recting reanalysis biases.

An additional point of interest concerns the relative behavior of

Table 2

Renewable Energy 261 (2026) 125280

ERA5 and MERRAZ2. Before post-processing, MERRA2 wind speeds are
closer to the TS values than those of ERA5. However, once corrected
with ANN-based MCP models, ERA5 systematically outperforms
MERRA2, both in direct and two-stage formulations. This inversion
highlights the fact that raw accuracy of reanalysis data does not neces-
sarily translate into better performance after bias correction. It also
explains why ERA5-based methods generally surpass MERRA2-based
ones in the corrected results. Whether this behavior is specific to the
conditions of the present site or represents a broader pattern is an open
question. Comparative studies at other locations with different climatic
and topographic settings would be needed to determine its generality,
which constitutes an important direction for future research.

The analysis of the hyperparameter catalogs (Appendix A, Table A.6)
reveals systematic patterns:

a) Models estimating wind direction required, on average, larger hid-
den layers than those estimating wind speed, reflecting the added
complexity of circular targets.

b) Two-stage models typically needed more neurons than direct models
for wind speed estimation, likely because they must reconstruct in-
termediate Cartesian components before converting them to polar
form.

Mean values of error and correlation metrics obtained during the testing process (long-term) for different ML techniques (RF, XGBoost, SVR, ANN), model types (direct
and two-stage), and reanalysis sources (MERRA2, ERA5, and their combination). The upper half of the table reports results for wind speed (MAE, RMSE, R?), while the
lower half corresponds to wind direction (MAE, RMSE, circular correlation coefficient r.). Boldface indicates the best performance within each metric set. The last
three columns show the adjusted p-values from Wilcoxon tests comparing ANN with the other ML techniques.

Model type Source data Target Metric Machine learning technique Test. p-values
RF XGBoost SVR ANN RF/ANN XGBoost/ANN SVR/ANN
Direct models MERRA2 A% MAE (m/s) 1.49 1.49 1.62 1.48 0.324 0.453 <0.001
ERAS 1.42 1.40 1.54 1.40 0.048 0.800 <0.001
MERRA2&ERAS 1.38 1.40 1.64 1.39 0.700 0.209 <0.001
MERRA2 RMSE (m/s) 1.91 1.91 2.08 1.89 0.016 0.068 <0.001
ERAS 1.83 1.81 1.99 1.79 0.001 0.133 <0.001
MERRA2&ERAS 1.78 1.80 2.10 1.77 0.481 0.003 <0.001
MERRA2 R? 0 75.35 75.25 70.10 75.79 0.012 0.064 <0.001
ERAS5 77.50 78.01 72.65 78.43 <0.001 0.076 <0.001
MERRA2&ERAS 78.75 78.16 69.47 79.00 0.133 0.002 <0.001
Two-stage models MERRA2 A% MAE (m/s) 1.55 1.57 1.76 1.51 <0.001 <0.001 <0.001
ERAS 1.47 1.48 1.64 1.43 <0.001 <0.001 <0.001
MERRA2&ERAS 1.44 1.45 1.75 1.41 0.007 0.001 <0.001
MERRA2 RMSE (m/s) 2.01 2.03 2.32 1.94 <0.001 <0.001 <0.001
ERAS 1.92 1.93 2.18 1.84 <0.001 <0.001 <0.001
MERRA2&ERAS 1.87 1.88 2.32 1.81 <0.001 <0.001 <0.001
MERRA2 R? (%) 73.99 73.43 65.41 76.12 <0.001 <0.001 <0.001
ERAS 76.25 75.95 69.33 78.48 <0.001 <0.001 <0.001
MERRA2&ERAS 77.53 77.26 65.92 79.14 <0.001 <0.001 <0.001
Direct models MERRA2 0 MAE (degree) 71.56 69.20 52.76 20.28 <0.001 <0.001 <0.001
ERAS5 69.64 67.54 51.93 19.71 <0.001 <0.001 <0.001
MERRA2&ERAS 71.63 70.76 59.60 19.72 <0.001 <0.001 <0.001
MERRA2 RMSE (degree) 87.73 86.24 71.17 34.74 <0.001 <0.001 <0.001
ERAS 86.40 84.93 69.78 33.84 <0.001 <0.001 <0.001
MERRA2&ERAS 88.03 87.64 74.79 33.94 <0.001 <0.001 <0.001
MERRA2 Te 0.001 0.224 0.210 0.610 <0.001 <0.001 <0.001
ERAS 0.083 0.248 0.179 0.627 <0.001 <0.001 <0.001
MERRA2&ERAS —0.04 0.105 0.046 0.619 <0.001 <0.001 <0.001
Two-stage models MERRA2 0 MAE (degree) 19.93 20.33 23.78 19.24 <0.001 <0.001 <0.001
ERAS 19.14 19.38 22.46 18.49 <0.001 <0.001 <0.001
MERRA2&ERAS 18.64 18.99 24.37 18.30 <0.001 <0.001 <0.001
MERRA2 RMSE (degree) 34.42 35.18 41.72 33.75 <0.001 <0.001 <0.001
ERAS 33.20 33.71 39.68 32.56 <0.001 <0.001 <0.001
MERRA2&ERAS 32.56 33.14 43.28 32.34 <0.001 <0.001 <0.001
MERRA2 e 0.608 0.605 0.562 0.631 <0.001 <0.001 <0.001
ERAS5 0.626 0.626 0.586 0.647 <0.001 <0.001 <0.001
MERRA2&ERAS 0.633 0.627 0.562 0.649 <0.001 <0.001 <0.001

11
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c) Dropout regularization and learning rates varied moderately across
tasks, but no single configuration dominated, indicating that ANN
performance is robust across a range of parameterizations.

d) The number of epochs required for convergence (Appendix A,
Fig. A1) was generally higher for direct models estimating wind
speed, suggesting a more gradual learning process compared to other
tasks.

To further investigate methodological alternatives, dual-output ANN
models (predicting Vy and Vy simultaneously) were compared with
single-output models (separate training for each component). Interest-
ingly, all variants—single-output, dual-output with unweighted mean
loss, and dual-output with variance-weighted loss—converged to the
same optimal hyperparameter configurations and produced identical
results in this case study. This indicates that, under the parameter ranges
explored, learning both components jointly did not provide measurable
improvements in generalization.

This outcome can be explained by several technical factors:

a) Separate models allow each network to dedicate its full capacity to a
single variable, while dual-output models must share hidden repre-
sentations, which may not be optimal for both outputs.

b) Vyand Vy exhibit different statistical distributions, so a joint loss may
force compromises, “sacrificing” accuracy in one output to improve
the other.

¢) Balancing losses is non-trivial: if one component has larger variance,
it may dominate training unless explicitly weighted.

d) Limited model capacity can restrict the ability of a dual-output
network to simultaneously capture both patterns, while two single-
output models double the effective capacity.

Despite the identical numerical performance, dual-output models
remain attractive because they reduce computational cost: only one
network must be trained, leading to shorter runtimes and simpler
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deployment. Thus, in practice, dual-output architectures can be rec-
ommended when efficiency is a priority.

By contrast, no joint multi-output models were tested for wind speed
(V) and wind direction (6). Although such an approach could in prin-
ciple improve the physical coherence of the predictions by capturing
their interdependence, it presents important challenges. V is a linear
target, typically optimized with squared-error loss, whereas 6 is circular
and requires dedicated angular loss functions. Combining both in a
single training process would thus require careful normalization or
weighting of heterogeneous errors, and may even involve transforming 6
into its Cartesian components (cos6, sinf) to avoid discontinuities. These
difficulties, together with the need to ensure methodological compara-
bility across techniques, motivated the decision to train separate models
for V and 0 in the present study.

Regarding the seasonal encoding discussed in Section 2.4, two
alternative formulations of the annual cycle were tested: a monthly
harmonic pair, Eq. (18), and a daily harmonic pair, Eq. (19). Both ap-
proaches provide a correct cyclic encoding, avoiding artificial discon-
tinuities at the end of the year. While the daily formulation offers finer
resolution of the annual cycle, the results obtained in this study did not
show significant differences in predictive accuracy compared to the
monthly representation.

This suggests that, for large-scale seasonal modulation, a monthly
harmonic is parsimonious and sufficiently robust against interannual
variability, whereas the daily formulation may become relevant in
contexts where higher temporal resolution is critical. Extending this
comparison to multiple sites with different climatic regimes would be
necessary to determine whether daily harmonics consistently improve
performance, representing a promising line of future work.

Overall, the results from Task 3 demonstrate that ANN-based MCP
models provide the most reliable corrections of reanalysis biases. The
comparative analysis of modeling alternatives (direct vs. two-stage,
single-vs. dual-output, monthly vs. daily harmonics) shows that,
although no significant accuracy gains were obtained from the more
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complex formulations in this case, they offer practical advantages (e.g.,
computational efficiency) and remain promising directions for future
studies.

3.3. Task-4: Analysis of the methods based on fundamental statistical
metrics

The following subsections show the results obtained in Task-4 from
the points of view indicated in Fig. 1.

3.3.1. Local accuracy

Fig. 8 shows the error metrics (MAE and RMSE) obtained when
comparing wind speed estimates from the MCP models with TS data.
Errors are presented as a function of the ANN-based MCP method (direct
or two-stage) and the input data sources (MERRA2, ERAS, or their
combination). The lowest average errors are consistently achieved when
both reanalysis datasets are combined. Moreover, all MCP-based esti-
mates reduce the errors reported in Table 1, confirming the added value
of bias correction compared with the raw reanalysis data.

Direct models generally yield lower mean errors than two-stage
models for wind speed. Significant differences between the two ap-
proaches are observed, except in the case of MAE when using MERRA2
or MERRA2 & ERAG as inputs. This suggests that, while both approaches
are effective, direct models are slightly better suited for speed
estimation.

Fig. 9 presents the error metrics (MAE and RMSE) for wind direction.
In contrast to wind speed, two-stage models clearly outperform direct
models, producing lower mean errors across all reanalysis inputs. The
smallest errors are again obtained when combining MERRA2 and ERAS.
For direct models, no significant differences are observed between ERA5
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alone and the combined dataset. As with wind speed, the MCP-corrected
results are substantially better than those from raw reanalysis, regard-
less of the training year.

Fig. 10 shows the correlation metrics: R? for wind speed (left plots)
and the circular correlation coefficient (r.) for wind direction (right
plots). For wind speed, the highest R? values are obtained when both
reanalysis sources are combined, but no significant difference exists
between direct (79 %) and two-stage (79.14 %) models. These results
indicate that approximately 79 % of the observed wind speed variability
can be explained by the predictors. Models trained with ERA5 consis-
tently yield higher R? values than those using MERRA2, a reversal of the
pattern observed in the raw data (Table 1), which highlights the stronger
corrective potential of ERA5 after ANN-based MCP processing.

For wind direction, two-stage models achieve the highest rc values,
confirming their superiority in capturing directional behavior. No sig-
nificant differences are found between ERA5 and the combined dataset
in this case. To facilitate interpretation, the comparison of circular
correlations in Fig. 10 was performed using a broken y-axis, which en-
hances the readability of differences in the central range while still
displaying outliers to provide a complete picture of the results.

Overall, the results from Task-4 confirm that ANN-based MCP
models substantially reduce the errors of raw reanalysis data and cap-
ture both wind speed and direction with good accuracy. Nevertheless,
model performance is not only influenced by the choice of approach
(direct vs. two-stage) or data source (MERRA2, ERA5, or their combi-
nation), but also by the amount of on-site data available for training. The
following section therefore examines the impact of training period
length, a critical factor for practical applications where measurement
campaigns are typically short.
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Fig. 11. a) Probability density function fitted to the wind data generated by the MCP model; b) Boxplot of correlation coefficients between the target site wind speeds
and those estimated with the MCP model; c) Boxplot of the absolute percentage error (APE) values estimated using the target site wind speeds and the wind speeds
generated by the MCP models.

3.3.2. Wind speed and direction distribution functions observed series at the TS.
The ability of MCP-based models to reproduce the statistical distri- For wind speeds, the direct model with combined reanalysis inputs
bution of wind variables was assessed by comparing the estimated and (MERRA2 & ERAS) provided the best performance, as also reflected in
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Fig. 12. Cumulative probabilities: a) Wind speed, b) Wind direction.

the lowest MAE and RMSE values (Fig. 8). Its fitted probability density
function closely reproduced the bimodal pattern observed in the TS data
(Fig. 11a).

The parameters of the fitted distributions are summarized in
Table A.7, while the results of the formal goodness-of-fit tests are given
in Table A.8. In all cases, the A-D, K-S, and E-D tests did not reject the
null hypothesis of equality between the estimated and observed distri-
butions at the 5 % level. The Wasserstein distance was also significantly
lower than for raw reanalysis data, confirming the improved alignment.
This is consistent with the cumulative probability curves (Fig. 12a),
which show that MCP-corrected wind speeds follow the TS distribution
much more closely than the raw reanalyses. The hourly correlations
reached a mean value of 0.888 (Fig. 11b), a level classified as “good” in
the MCP literature [37]. The mean wind speed obtained with the direct
model (7.13 m/s) was practically identical to the observed value (7.2
m/s).

For wind directions, the two-stage model with combined inputs
(MERRA2 & ERAS) yielded the closest agreement with the TS distribu-
tion. Its fitted probability density function (Fig. 13a) and the cumulative
distribution (Fig. 12b) illustrate the strong alignment achieved after bias
correction. The parameters of the distributions are provided in
Table A.9, while the outcomes of the CvM, K-S, and E-D tests are shown
in Table A.10. Again, the null hypothesis of equality between distribu-
tions was not rejected, and the Wasserstein distance (0.13) was much
smaller than for raw reanalysis data. The mean circular correlation co-
efficient between estimated and observed hourly directions was 0.648
(Fig. 13b), a substantial improvement over the raw correlations
(Table 1). The estimated mean wind direction (4.58°) was also nearly
identical to the observed mean (4.49° at the TS), which has practical

implications for turbine layout design, as proper alignment with pre-
vailing winds helps reduce wake effects and increase energy efficiency.

In summary, both wind speed and wind direction distributions
generated by ML-based MCP models can be considered statistically
indistinguishable from TS observations, providing a robust basis for
long-term wind resource assessment.

3.3.3. Wind power densities

As shown in Fig. 11c, the mean absolute percentage error (APE)
between the wind power density (WPD) estimated by the direct MCP
model and that calculated from TS wind speeds is 13.89 %. This repre-
sents a substantial improvement compared to the APE values obtained
when using raw reanalysis data (39 % for MERRA2 and 63.1 % for ERA5;
see subsection 3.1.2). These findings confirm that MCP-based models are
able to substantially reduce the bias of reanalysis data, providing wind
power density values that are much closer to local observations. Since
(WPD) is a key indicator for assessing the economic viability of wind
projects, this improvement highlights the practical relevance of applying
ML-based MCP models in wind resource assessment.

3.3.4. Seasonal evolution and daily mean behavior of wind speed

The MCP models also succeeded in reproducing the temporal struc-
ture of wind speed variability. As shown in Fig. 6, the Pearson correla-
tion between monthly mean wind speeds estimated with the direct
model and those recorded at the TS was 0.996, a much higher value than
those obtained when comparing the TS with MERRA2 or ERA5 alone.
Similarly, the correlation between daily mean wind speeds estimated by
the direct model and those observed at the TS reached 0.994 (Fig. 7).
These results indicate that the MCP methodology not only corrects mean
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Fig. 13. a) Probability density function fitted to the wind direction data generated by the MCP model, b) Boxplot of correlation coefficients between the target site

wind directions and those estimated by the MCP model.
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Fig. 14. Trend of a) MAE, b) RMS, c¢) R2, d) MAE _Circular, e) RMSE_Circular, and f) circular correlation coefficient (r.) metrics as the number of years used in the

training of the MCP models increases.

values but also preserves the seasonal cycle and the intraday profile of
wind speeds. This capacity is particularly important for energy system
applications, where matching wind generation with demand and plan-
ning storage depends on capturing realistic hourly and seasonal
dynamics.

3.4. Results of the analysis of performance (Task-5)

Fig. 14 shows the evolution of long-term error (MAE, RMSE, MAE -
Circular, RMSE_Circular) and association metrics (R?, ) as the training
window increases from one to four years (Y = 1-4). A consistent trend
can be observed: error metrics decrease, while association metrics in-
crease with longer training periods. This reflects the fact that larger
training datasets allow the models to better capture the statistical re-
lationships between predictors and target variables, leading to improved
generalization and stability.

These results have important implications for the design of mea-
surement campaigns. In the case studied, using only one year of training
data already provides reasonably accurate estimates, but incorporating
two or more years yields additional gains in robustness. This observation
is consistent with the recommendation of Fadigas et al. [8], who
emphasized the importance of extending measurement campaigns from
24 to 36 months in Brazil to ensure reliable wind resource assessments.
Our findings confirm that longer training periods enhance the general-
ization ability of ML-based MCP models, reducing sensitivity to the
specific choice of training year.

However, this technical improvement must be balanced against the
practical costs of measurement campaigns. Extending the data collection
period at the target site implies higher economic costs and, more criti-
cally, longer delays in decision-making for wind project development.
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In practice, long on-site measurement campaigns can delay invest-
ment decisions, especially where wind farm development is regulated
through competitive tenders with strict deadlines between call publi-
cation and project submission. For this reason, developers often have no
more than one year to collect wind data at a candidate site. While such a
period is generally sufficient to characterize the seasonal cycle, it is
insufficient to capture interannual variability, which typically requires
substantially longer observational records.

In this context, our results highlight an important trade-off: while
two or more years of training data improve the performance of MCP
models, in practice many projects must rely on shorter campaigns (often
<1 year). The fact that our models already achieve high correlations (R
~ 0.78, .~ 0.63) and low errors with Y =1 is therefore a key finding, as
it shows that reliable bias correction of reanalysis data can be achieved
even under the typical constraints faced by developers. Longer training
windows, when available, remain desirable for research or strategic
planning, but the practical feasibility of one-year campaigns makes them
the default option in most real-world wind energy tenders.

4. Limitations

The present study was designed to evaluate the ability of ML-based
MCP methods to correct the bias of a single reanalysis grid point at a
target site. This choice is consistent with common practice in wind
resource assessment, where reanalysis data are often used as a proxy for
local conditions. However, several methodological alternatives remain
unexplored.

First, the use of neighboring reanalysis grid cells could provide
additional spatial context, although selecting the most representative
nodes (closest vs. most correlated with the target site) would require a
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dedicated study. As indicated in Ref. [37], the use of a high number of
reference stations (neighboring reanalysis grid cells) may result in
overspecification with its associated negative effects. These include,
among others, an increase in the estimation error and/or overfitting,
which could be detrimental to the generalization capacity of the model
when handling new data (prediction). Therefore, it would be necessary
to analyze the benefits of feature selection [37]. It would also be
appropriate to carry out a global sensitivity analysis method applied to
wind speed and direction prediction models [42]. The relevance of a
global sensitivity analysis is that it allows quantification of the contri-
bution of the uncertainty of each input variable of the estimation model
to the uncertainty of the model response [42]. Given the potential cor-
relation between data from neighboring reanalysis grid cells, the global
sensitivity method should consider the dependency among the input
variables [42].

Second, it should be noted that the native spatial resolution is
approximately 30 km for ERA5 and 50 km for MERRA2. Consequently,
the target site may be located at a considerable distance from the cor-
responding reanalysis node, which can affect the accuracy with which it
represents local conditions. Depending on the distance to the grid node,
as well as hourly variations in wind speed and direction, discrepancies
may arise between the reanalysis series and the target site measure-
ments, potentially leading to a lack of synchronization between them. In
this context, the option of incorporating lagged predictors to capture
delayed or advanced dependencies between the reference series and the
target series deserves to be explored. Another possibility is to apply
spatial interpolation methods between neighboring reanalysis nodes.
Deterministic approaches, which estimate values based on nearby
samples (e.g., Inverse Distance Weighting [43]), or geostatistical ap-
proaches, which rely on statistical models and spatial autocorrelation to
provide accuracy estimates (e.g., kriging [43]), could be used to esti-
mate wind characteristics at the exact coordinates of the target site.
These interpolated values could then serve as input to the ML models,
potentially improving their representativeness.

Third, the incorporation of additional meteorological variables (e.g.,
pressure, temperature, solar radiation, relative humidity, etc.) into the
input space of the ML models could be analyzed in order to improve the
physical representation of the system and potentially reduce error
metrics.

Fourth, ERA5 provides wind data at 10 m and 100 m above ground
level, while MERRA2 provides data at three heights: 2 m, 10 m, and 50
m. It is of interest to analyze the error metrics when including wind
speeds at multiple altitudes as predictors. In this context, it should be
noted that feature selection methods may discard some heights due to
the high correlation among them [37]. It is worth noting that some
authors [44] have suggested that the heights above ground level (agl) at
which data are collected at the reference and target sites should be
similar.

Another important limitation is the lack of results from ML tech-
niques using nearby ground-based reference stations to compare against
those obtained with reanalysis data. In this regard, it is worth noting that
the main conclusion of the studies conducted by Brower [45], where
reanalysis data and direct observations were compared, was that rean-
alysis data were not reliable enough for use in MCP methods. However,
Schwartz et al. [46] carried out an initial assessment of the usefulness of
including reanalysis data in wind resource evaluation methodologies
and obtained encouraging results, while emphasizing that unresolved
issues remain that justify further research. We believe that such com-
parisons would be valuable, although to reach broader conclusions a
more systematic evaluation across multiple sites with diverse terrains
would be required. This is because the representativeness of results from
nearby stations depends largely on local orography, which limits their
generalizability.

In addition, the present study did not explore the multi-output ca-
pabilities of ML techniques other than ANN. Although RFs natively
allow multi-output prediction, and SVR/XGBoost can be extended via
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wrappers, these approaches do not share parameters across outputs and
are effectively equivalent to training independent models. Assessing the
potential of such variants, as well as future multitask implementations in
algorithms beyond ANN, constitutes a promising line of research.

Furthermore, no joint multi-output models were developed for wind
speed (V) and wind direction (6). While such an approach could enhance
physical consistency by modeling both variables simultaneously, it rai-
ses important technical challenges. V is a linear target typically opti-
mized with squared-error loss, whereas 0 is circular and requires
specialized angular losses. Combining them in a single architecture
would therefore demand careful balancing of heterogeneous objectives
or a transformation of 0 into its Cartesian components (cos0, sinf) to
avoid discontinuities. For these reasons, V and 0 were modeled inde-
pendently in this study, but extending multi-output formulations to
heterogeneous targets remains an important direction for future
research.

Finally, it should be noted that the comparative behavior of rean-
alysis datasets may vary across sites. In the present study, raw MERRA2
wind speeds were initially closer to the observed values than ERA5, but
after ML-based bias correction, ERAS5 consistently outperformed
MERRA2. Whether this inversion is a site-specific phenomenon or re-
flects a more general pattern remains an open question. Systematic
comparative studies at other locations, encompassing diverse climatic
and topographic conditions, would be needed to establish the generality
of this finding.

Addressing these aspects lies beyond the scope of the present work,
but they represent promising avenues for future research. Their inclu-
sion could complement and expand the approach presented here, further
strengthening the methodological robustness and applicability of ML-
based MCP methods.

5. Conclusions

This study shows that machine-learning-based MCP methods can
substantially improve the reconstruction of long-term wind speed and
direction at sites with limited on-site measurements. By correcting the
systematic discrepancies of ERA5 and MERRA-2, the proposed approach
produces site-adapted wind series that more accurately reflect the
observed mean values (7.2 m/s vs. 7.13 m/s for wind speed and 4.49° vs.
4.50° for direction) and their daily and seasonal variability, achieving a
correlation of 0.994 for the daily mean cycle.

Among the tested techniques, artificial neural networks consistently
achieved the best performance, and the combination of ERA5 and
MERRA-2 yielded the lowest errors across all model variants. The bias-
corrected MCP models reduced the mean relative error in wind power
density to 13.9 %, compared with 39 % (MERRA-2) and 63.1 % (ERAS)
from raw reanalysis data, demonstrating a substantial gain in long-term
resource representativeness.

The comparison between direct and two-stage MCP formulations
shows similar overall performance, while the choice of ML technique
and training-period length has a clear influence on accuracy. These
findings indicate that the proposed methodology provides a practical
and robust framework for improving the usability of reanalysis data in
wind-resource feasibility studies, especially at locations where long-
term ground measurements are unavailable.
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A.1. R libraries used
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MAC/2/2.2/0011). This work made use of wind speed and direction
data provided by the Spanish State Meteorological Agency (AEMET),
Ministry of Agriculture, Food and Environment. No funding sources had
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Table A.1 lists the R libraries employed to implement and train the machine learning (ML) models (ANN, SVR, XGBoost, RF).

Table A.1

R code libraries used for the implementation and training of the different machine learning (ML) techniques

ML Library Reference

ANN torch https://cran.r-project.org/web/packages/torch/index.html

SVR caret https://cran.r-project.org/web/packages/caret/index.html
Kernlab https://cran.r-project.org/web/packages/kernlab/index.html

XGBoost mlr3 https://cran.r-project.org/web/packages/mlr3/index.html

RF mlr3 https://cran.r-project.org/web/packages/mlr3/index.html

A.2. Probability distributions of wind data

This section provides the parameters and goodness-of-fit test results for the wind speed and direction distributions from the target site and

reanalysis datasets (ERA5 and MERRA2).

Table A.2 reports the parameters and Anderson-Darling (A-D) test results for the wind speed pdfs obtained from the target site and the reanalysis
datasets (ERA5 and MERRAZ2). In all cases, the A-D test returned p-values above 0.05, indicating no statistical evidence to reject the null hypothesis of
similarity between the empirical and fitted distributions. Table A.3 presents the corresponding results for the wind direction pdfs, together with the
Cramér—von Mises (CvM) test. Although these tests also support similarity, visual inspection reveals noticeable discrepancies, particularly between
ERAS and the target site, which highlights the limitations of reanalysis data in capturing local directional patterns.

Table A.2

Parameters of the wind speed distributions of the data sources and the p-values obtained from the goodness-of-fit test used.

Data sources Parameters A-D statistic p-value
o p1 o2 B2 ®
- ms~! - ms™! - -
MERRA2 2.23 4.45 5.94 8.47 0.478 0.8055 0.931
ERAS 1.97 4.53 4.48 7.25 0.435 0.921 0.933
Target site 1.92 4.73 3.89 10.37 0.416 2.300 0.647
Table A.3
Parameters of the wind direction distributions generated by the MCP models, and the p-values obtained from the goodness-of-fit
test used.
MERRA2 ERA5 TARGET
K1 - 27.5192899 16.8648556 16.179670
H1 (rad) 1.1565837 0.2536739 0.1117812
o1 - 0.53855894 0.60876372 0.69480834
Ko - 4.0460901 2.8216698 1.643063
p2 (rad) —2.7217488 —2.5940214 —3.1043191
W2 - 0.05431074 0.06069787 0.07180155
K3 - 0.3030963 1.4530359 1.137917
H3 (rad) —0.6507579 1.1163983 —1.4023937
w3 - 0.07373193 0.11668085 0.04990065
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Table A.3 (continued)

MERRA2 ERA5 TARGET
K4 - 2.6728175 0.8041157 2.418890
Hag (rad) 0.8700034 1.0141130 1.1245219
04 - 0.13399201 0.03814863 0.06825952
Ks - 3.7265521 4.1479544 3.899613
s (rad) 1.3348655 0.2662494 —0.3872888
W5 - 0.19940638 0.17570893 0.11522994
CvM statistic 0.2535 0.10399 8.12
p-value 0.65 0.814 0.492

A.3. Distributions generated by MCP models

Tables A.4 and A.5 report the parameters of the wind speed and wind direction pdfs estimated with direct and two-stage MCP models, together
with the corresponding goodness-of-fit test results. The analysis indicates that direct models tend to reproduce more accurately the global shape of the
wind speed pdf, whereas two-stage models provide a better adjustment of the wind direction pdf. These results are consistent with the discussion in
Section 3, where the complementary strengths of both approaches are emphasized.

Table A.4
Tests and metrics used to compare two wind speed distributions.

Anderson-Darling test. p-values

MERRA2 ERAS
Target site A-D = 24; p < 0.001 A-D = 68.8; p < 0.001
Kolmogorov-Smirnov test
Target site K-S = 0.17044; p < 0.001 K-S = 0.30226; p < 0.001

Energy distance test for equality of distributions

Target site E-D = 83.07; p < 0.001 E-D = 275.20; p < 0.001

Wasserstein distance

Target site 1.0131 1.7581

Table A.5
Statistical tests and metrics used to compare two wind direction distributions.

Cramér-von Mises test. p-values

MERRA2 ERAS
Target site CvM = 11026.918; p < 0.001 CvM = 3215.78; p < 0.001
Kolmogorov-Smirnov test
Target site K-S = 0.42876; p < 0.001 K-S = 0.17843; p < 0.001
Energy distance test for equality of distributions
Target site E-D = 22053.836; p < 0.001 E-D = 6431.56; p < 0.001
Wasserstein distance
Target site 1.725 0.9216

A.4. Statistical comparison of distributions

Table A.6 summarizes the outcomes of several tests—including Anderson-Darling, Kolmogorov—-Smirnov, Energy distance, and Wasserstein dis-
tance—used to compare the pdfs generated by MCP models with those observed at the target site. The reported values confirm that the application of
MCP substantially improves the agreement between reanalysis-based and observed distributions, both for wind speed and direction, thereby sup-
porting the effectiveness of the proposed methodology.

Table A.6
Best hyperparameters (frequencies of occurrence in parentheses).

Model type Source data Feature target Number of neurons per hidden layer Dropout rate Learning rate
Layer_1 Layer_2 Layer_3 Dropout_1 Dropout_2 Dropout_3
Direct models MERRA2 \% 63 (17) 54 (17) 0(17) 0.1120 (17) 0.1791 (17) -(17) 0.001 (23)
159 (6) 104 (6) 53(6) 0.2738 (6) 0.0376 (6) 0.1876 (6)
ERA5 A 63 (6) 54 (6) 0(6) 0.1120 (6) 0.1791 (6) - (6) 0.001 (23)

(continued on next page)
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Table A.6 (continued)

Model type Source data Feature target Number of neurons per hidden layer Dropout rate Learning rate
Layer_1 Layer_2 Layer_3 Dropout_1 Dropout_2 Dropout_3
159 (17) 104 (17) 53(17) 0.2738 (17) 0.0376 (17) 0.1876 (17)
MERRA2&ERAS \ 63 (14) 54 (14) 0(14) 0.1120 (14) 0.1791 (14) -(14) 0.001 (23)
159 (9) 104 (9) 53(9) 0.2738 (9) 0.0376 (9) 0.1876 (9)
MERRA2 0 63 (1) 54 (1) 0(1) 0.1120 (1) 0.1791 (1) -(D 0.001 (23)
159 (22) 104 (22) 53(22) 0.2738 (22) 0.0376 (22) 0.1876 (22)
ERA5 0 63 (1) 54 (1) 0(1) 0.1120 (1) 0.1791 (1) - 0.001 (23)
159 (22) 104 (22) 53(22) 0.2738 (22) 0.0376 (22) 0.1876 (22)
MERRA2&ERAS 0 159 (23) 104 (23) 53(23) 0.2738 (23) 0.0376 (23) 0.1876 (23) 0.001 (23)
Two-stage models MERRA2 Vy 159 (23) 104 (23) 53(23) 0.2738 (23) 0.0376 (23) 0.1876 (23) 0.001 (23)
Vy 159 (22) 104 (22) 53(22) 0.2738 (22) 0.0376 (22) 0.1876 (22) 0.001 (23)
63(1) 54(1) 0o(1) 0.1120 (1) 0.1791 (1) -()
ERA5 Vx 159 (23) 104 (23) 53(23) 0.2738 (23) 0.0376 (23) 0.1876 (23) 0.001 (23)
Vy 159 (22) 104 (22) 53(22) 0.2738 (22) 0.0376 (22) 0.1876 (22) 0.001 (23)
63(1) 54(1) 0o(1) 0.1120 (1) 0.1791 (1) -(1)
MERRA2&ERAS Vy 159 (23) 104 (23) 53(23) 0.2738 (23) 0.0376 (23) 0.1876 (23) 0.001 (23)
Vy 159 (22) 104 (22) 53(22) 0.2738 (22) 0.0376 (22) 0.1876 (22) 0.001 (23)
63(1) 54(1) 0(1) 0.1120 (1) 0.1791 (1) -(1)

A.5. ANN architectures and hyperparameters

The ANN models employed in this study correspond to fully connected feed-forward networks with ReLU activation functions in the hidden layers.
Table A.7 presents the most frequent optimal hyperparameter configurations identified during training, including the number of neurons per layer,
dropout rates, and learning rate. Fig. Al illustrates the evolution of the training process and highlights the best epochs selected by early stopping,
providing additional insight into the stability and convergence of the ANN models.
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Fig. A.1. Best epochs detected in the training stages.
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Table A.7
Parameters of the wind speed distributions generated by the MCP models and the p-values obtained from the goodness-of-fit test used.

Model Data sources Parameters A-D statistic p-value
o B1 a2 P2 o
- ms! - ms™! - -
Direct MERRA2 3.097218 3.898027 3.207062 9.158304 0.224331 5.63184197812734 0.678
ERAS 3.128615 3.609815 3.182110 9.119546 0.2189469 5.81914340389994 0.663
MERRA2&ERAS5 2.975513 3.655812 3.187744 9.166803 0.2185944 5.7613296060299 0.659
Two-stage MERRA2 2.007278 3.573671 3.705527 9.483398 0.3323665 5.5397650443119 0.737
ERAS 2.007188 3.361209 3.524680 9.393152 0.3036387 4.88330523152035 0.792
MERRA2&ERAS 1.964464 3.431325 3.598121 9.465688 0.3129155 4.49977791657147 0.82

A.6. Additional tests for wind direction

Complementary results for the wind direction pdfs are provided in Tables A.8 and A.9, which include the Cramér-von Mises, Kolmogor-
ov-Smirnov, Energy distance, and Wasserstein distance statistics comparing the direct and two-stage MCP models against the target site. These results
confirm the conclusions presented in the main text, namely that two-stage models offer a superior representation of directional patterns, while direct
models are more effective for wind speed estimation.

Table A.8
Tests and metrics used to compare two wind speed distributions.

Anderson-Darling test. p-values

Direct model Two-stage model
Target site A-D =2.21; p = 0.0682 A-D = 2.7; p = 0.0422
Kolmogorov-Smirnov Test
Target site K-S = 0.04261; p = 0.5061 K-S = 0.0479; p = 0.3381
Energy distance test for equality of distributions
Target site E = 6.6743; p = 0.14537 E =10.21173; p = 0.0664
Wasserstein distance
Target site 0.3049 0.4125

Table A. 9
Parameters of the wind direction distributions constructed from the data estimated using the two MCP models (direct and two-stage) and the p-values obtained from
the goodness-of-fit test employed.

Parameters Direct models Two-stage models

MERRA2 ERA5 MERRA2&ERAS MERRA2 ERA5 MERRA2&ERAS
K1 - 143.556742 144.679467 117.275420 35.978766 32.023274 30.218896
H1 (rad) 0.02991201 0.02538258 0.03869844 0.06288515 0.06738307 0.07044619
1 - 0.31974868 0.33136176 0.38477353 0.53626463 0.57703988 0.59218436
K2 - 2.344836 2.361173 2.342035 2.159977 2.293838 2.873558
2 (rad) 1.46360509 1.35368931 1.41956171 —2.71862142 —2.65891637 —2.76626113
2 - 0.06645413 0.08224934 0.08782369 0.06344519 0.05862097 0.05110372
K3 - 1.241879 1.901517 11.836226 1.349540 1.467506 1.624546
H3 (rad) —0.95676818 —0.22650858 0.18919369 1.40986160 1.62558722 1.59177336
3 - 0.10631832 0.16973824 0.17321678 0.06699457 0.06547607 0.06717850
K4 - 2.567656 17.030297 1.513234 2.606945 2.519059 2.617477
Y4 (rad) 0.06741906 0.16551743 —0.90421319 —0.45238071 —0.53139667 —0.68706373
W4 - 0.19992365 0.33729302 0.14426601 0.11093712 0.10444880 0.10495889
K5 - 17.673995 1.080062 6.951453 10.360101 9.351302 8.686815
Hs (rad) 0.14773743 —0.91309823 0.11365550 0.24275401 0.26740822 0.26607832
5 - 0.30755522 0.07935764 0.20991999 0.22235850 0.19441426 0.18457453
CvM statistic 0.3930 0.792 0.4974 0.5703 1.359 0.5299
p-value 0.9 0.556 0.858 0.766 0.562 0.704
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Table A.10
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Tests and metrics used to compare two wind direction distributions.

Cramér von Mises test. p-values

Direct model
Target site
Kolmogorov-Smirnov test
Target site
Energy distance test for equality of distributions
Target site
Wasserstein distance

Target site 0.1372

K-S =0.10919; p < 0.001

E = 237.18; p = 0.2106

CvM = 118.59; p = 0.21096

Two-stage model
CvM = 74.57; p = 0.3363

K-S = 0.06258; p = 0.1046
E =149.14; p = 0.3433

0.1317
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