Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/156293
Campo DC Valoridioma
dc.contributor.authorBensefia, Ameuren_US
dc.contributor.authorDjeddi, Chawkien_US
dc.contributor.authorHannousse, Abdelhakimen_US
dc.contributor.authorDíaz Cabrera, Moisésen_US
dc.date.accessioned2026-01-28T13:26:54Z-
dc.date.available2026-01-28T13:26:54Z-
dc.date.issued2026en_US
dc.identifier.issn2626-8493en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/156293-
dc.description.abstractThis study investigates the use of offline handwriting analysis for the automated diagnosis of Parkinson’s disease (PD) using deep learning techniques. A convolutional neural network (CNN) was designed to extract discriminative spatial features from handwritten images and classify subjects as either PD patients or healthy controls. The model was evaluated on four publicly available datasets—HandPD, NewHandPD, PaHaW, and UCI—representing a diverse range of handwriting patterns and acquisition conditions. The proposed CNN achieved 100% accuracy on the smaller UCI dataset and 94.74% accuracy on the larger NewHandPD dataset. To overcome dataset imbalance and limited sample diversity, various data augmentation strategies were applied, leading to a notable increase in overall performance, with accuracies exceeding 97% on larger datasets. These results demonstrate that offline handwriting analysis, supported by deep CNN architectures and data augmentation, offers a promising, non-invasive, and cost-effective approach for early PD diagnosis and potential continuous monitoring. Furthermore, this study aligns with broader advances in AI-assisted medical diagnostics, reinforcing the role of machine learning and image-based analysis in healthcare applications.en_US
dc.languageengen_US
dc.relation.ispartofInternational journal of online and biomedical engineeringen_US
dc.sourceInternational Journal of Online & Biomedical Engineering, [ISSN2626-8493], v. 22 (1), p. 133-146, (2026).en_US
dc.subject32 Ciencias médicasen_US
dc.subject3201 Ciencias clínicasen_US
dc.subject320507 Neurologíaen_US
dc.subject.otherArchimedean spiralen_US
dc.subject.otherConvolutional neural network (CNN)en_US
dc.subject.otherHandwritingen_US
dc.subject.otherParkinson’s disease (PD)en_US
dc.titleParkinson’s Disease Detection through Offline Handwriting Analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.3991/ijoe.v22i01.58513en_US
dc.identifier.issue01-
dc.investigacionCiencias de la Saluden_US
dc.description.numberofpages14 p.en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr0,39
dc.description.sjrqQ2
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.fullNameDíaz Cabrera, Moisés-
Colección:Artículos
Adobe PDF (713,31 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.