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PAPER

Parkinson’s Disease Detection through Offline 
Handwriting Analysis: A CNN-Based Approach

ABSTRACT
This study investigates the use of offline handwriting analysis for the automated diagnosis 
of Parkinson’s disease (PD) using deep learning techniques. A convolutional neural network 
(CNN) was designed to extract discriminative spatial features from handwritten images and 
classify subjects as either PD patients or healthy controls. The model was evaluated on four 
publicly available datasets—HandPD, NewHandPD, PaHaW, and UCI—representing a diverse 
range of handwriting patterns and acquisition conditions. The proposed CNN achieved 
100% accuracy on the smaller UCI dataset and 94.74% accuracy on the larger NewHandPD 
dataset. To overcome dataset imbalance and limited sample diversity, various data augmenta-
tion strategies were applied, leading to a notable increase in overall performance, with accu-
racies exceeding 97% on larger datasets. These results demonstrate that offline handwriting 
analysis, supported by deep CNN architectures and data augmentation, offers a promising, 
non-invasive, and cost-effective approach for early PD diagnosis and potential continuous 
monitoring. Furthermore, this study aligns with broader advances in AI-assisted medical 
diagnostics, reinforcing the role of machine learning and image-based analysis in healthcare 
applications.

KEYWORDS
parkinson’s disease (PD), convolutional neural network (CNN), handwriting, archime-
dean spiral

1	 INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disorder charac-
terized by motor symptoms such as tremors, bradykinesia, rigidity, and postural 
instability. Alongside these motor symptoms, non-motor symptoms, including 
cognitive impairment, mood disturbances, and autonomic dysfunction, contribute 
to the multifaceted nature of the disease [1]. Accurate diagnosis of PD is crucial for 
timely intervention and optimal management of symptoms. Traditional diagnostic 
approaches for PD primarily rely on clinical assessment, neuroimaging techniques, 
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and biochemical markers. While effective, these methods often lack sensitivity and 
specificity, particularly in the early stages of the disease. Moreover, they can be costly 
and resource-intensive, which limits widespread adoption.

Recent advancements in digital health technologies have opened avenues for 
exploring alternative diagnostic modalities that offer non-invasive, cost-effective, 
and accessible solutions for PD diagnosis. Among these modalities, offline handwrit-
ing analysis shows promise in detecting subtle motor and cognitive impairments 
associated with PD [2]. Handwriting, a complex motor task, involves coordinated 
movements of the hand, fingers, and wrist, as well as cognitive processes such as 
planning, attention, and memory. Studies have demonstrated that individuals with 
PD exhibit distinctive handwriting features, including micrographia (reduced let-
ter size), dysfluencies (hesitations and interruptions), and alterations in stroke 
dynamics [3]. These alterations reflect underlying motor dysfunction, bradykinesia, 
and impaired fine motor control characteristic of Parkinson’s disease.

Hand tremors are one of the primary motor symptoms associated with PD, 
sparking considerable interest in handwriting analysis as a potential diagnos-
tic tool. This approach involves examining hand movements during handwriting, 
either through online trace analysis or by capturing hand movements using smart 
pens. By leveraging digital pen technology and advanced handwriting analysis 
algorithms, researchers can precisely measure and quantify subtle abnormalities 
in handwriting, such as variations in pen pressure, velocity, stroke duration, and 
spatial-temporal parameters [8]. Despite the acknowledged benefits of handwriting 
analysis, including its non-invasive nature and cost-effectiveness, the literature has 
not extensively explored the use of offline handwriting analysis for diagnosing PD. 
Offline analysis offers distinct advantages, such as the ability to detect and monitor 
the disease economically and without the need for continuous observation. Given 
that PD impacts motor control and may lead to noticeable changes in handwriting, 
analyzing handwriting samples provides a practical approach to assessing motor 
symptoms. This study aims to fill the existing gap in the literature by focusing on 
offline handwriting analysis, particularly static methods that involve analyzing 
handwriting images. We conducted extensive experiments using several publicly 
available datasets to demonstrate the effectiveness of these approaches. To this end, 
we developed a CNN model architecture to evaluate its performance in detecting PD 
across different datasets, thereby advancing the understanding of how static hand-
writing analysis can contribute to diagnosis and monitoring.

This paper is organized into four sections as follows: In Section 2, we review 
advancements in PD diagnosis through both offline and online handwriting. Next, 
we detail our proposed approach based on a CNN network in Section 3, followed 
by the presentation of experimental findings in Section 4. Finally, we discuss future 
research directions in this area.

2	 LITERATURE REVIEW

Several works have been dedicated to the detection of PD through the analysis 
of handwriting images [4] [5]. These studies typically fall into two primary catego-
ries: static and dynamic approaches. Static approaches involve the examination of 
static features such as the shape, size, and spatial distribution of handwritten char-
acters, while dynamic approaches focus on analyzing real-time captured data such 
as pen pressure, velocity, and acceleration during the act of writing. In the following,  
we delineate each approach and highlight key studies from the literature that 
exemplify these categories.

https://online-journals.org/index.php/i-joe


iJOE | Vol. 22 No. 1 (2026)	 International Journal of Online and Biomedical Engineering (iJOE)	 135

Parkinson’s Disease Detection through Offline Handwriting Analysis: A CNN-Based Approach

2.1	 Static approaches

Static approaches involve the analysis of images of handwriting samples, such 
as scanned documents or digital images. These methods extract features concerning 
the shape, size, and consistency of handwritten characters and symbols. Techniques 
such as deep learning, transfer learning, and traditional image processing are used 
to classify these features and identify potential markers of PD. In the following 
section, we present some of the major works that have adopted this approach.

Mitra et al. [6] fine-tuned a pre-trained ResNet-152 model for PD detection by freezing 
its top 18 layers to retain the learned features from the original training. They further 
enhanced the training process by incorporating callbacks and applying early stopping to 
prevent overfitting and ensure optimal training duration. The model was experimented 
on the NewHandPD dataset, which was augmented with horizontal flips to increase the 
diversity and robustness of the training samples. This fine-tuning and augmentation 
strategy led to the model achieving an impressive 100% accuracy on the dataset.

Agrawal et al. [7] proposed a hybrid deep learning and machine learning technique 
for PD detection. They used pretrained CNN models on the NewHandPD dataset, with 
VGG16 performing best. Features from VGG16’s fc8 layer were optimized using Binary 
Grey Wolf Optimization (BGWO). The selected features were classified using an SVM. 
This approach achieved 99.8% accuracy on the NewHandPD dataset. The results 
highlight the effectiveness of combining deep learning and traditional ML techniques.

Wang et al. [8] proposed a weighted voting method using logistic regression (LR), 
decision trees (DT), and K-nearest neighbors (KNN). These classifiers utilized fused 
features from two transformers: Vision Transformer (ViT) and Coordinate Attention-
enhanced Swin Transformer (CAS). The HandPD and NewHandPD datasets were 
augmented using CycleGAN to generate synthetic images, improving robustness. 
Fused features captured both global and local dependencies, creating a comprehen-
sive feature set. The weighted voting method assigned different weights to LR, DT, 
and KNN based on their performance. This approach achieved 92.68% accuracy on 
the augmented datasets. It highlights the benefits of advanced feature extraction, 
classifier fusion, and sophisticated data augmentation.

Kamran et al. [9] evaluated CNN variants for PD handwriting classification using 
four datasets: PaHaW, HandPD, NewHandPD, and Parkinson’s Drawing. PaHaW signals 
were converted to RGB images for CNN compatibility. To address data limitations, 
they applied augmentation techniques, including contrast adjustment, illumination 
changes, thresholding, flipping, and rotation. Six CNN architectures were tested: 
1) AlexNet, 2) GoogleNet, 3) VGG16, 4) VGG19, 5) ResNet50, and 6) ResNet101. The 
highest accuracy (99.22%) was achieved using AlexNet on the combined dataset with 
illumination augmentation, while performance on HandPD alone reached 90.41%.

Naz et al. [10] investigated CNN-based PD detection with feature fusion using AlexNet, 
GoogleNet, VGG16, VGG19, ResNet50, and ResNet101 on HandPD, NewHandPD, and 
Parkinson’s Drawing datasets. Augmentation techniques (rotation, flipping, contrast, 
and illumination) enhanced the dataset. Pretrained CNN features were extracted with 
frozen layers, fused via addition, multiplication, and mean operations, and classified 
using SVM. The best accuracy (99.35%) was obtained by fusing features from the fc6 
layer of AlexNet and VGG16, using illumination-based augmentation.

2.2	 Dynamic approaches

Dynamic approaches focus on the analysis of handwriting data collected in real-
time using digital devices equipped with sensors. These methods capture dynamic 
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features such as pen pressure, velocity, and acceleration, providing detailed 
information about the motor control involved in handwriting. This data is often 
analyzed using traditional and advanced machine learning techniques to detect 
patterns indicative of Parkinson’s disease.

Valla et al. in [11] have introduced an innovative feature derived from 
Archimedean spiral drawing tests for diagnosing PD using traditional machine 
learning techniques. The features captured subtle changes in handwriting trajectory 
that are difficult to discern visually but may be indicative of tremor-like symptoms. 
The study utilizes two datasets, DraWritePD and PaHaW, employing Fisher’s score 
and recursive feature elimination for feature selection. Six classifiers were trained 
and evaluated through nested cross-validation to distinguish between healthy con-
trols and Parkinson’s patients. The ensemble classifiers, combined with a nested 
wrapper-type feature selection method, achieve an accuracy of 84.33% and 73.71% 
for DraWritePD and PaHaW datasets, respectively.

Diaz et al. [12] introduced “dynamically enhanced” static handwriting images 
for PD diagnosis, preserving temporal and velocity data by plotting points with pen-
ups. Tested on the PaHaW dataset, this method outperformed static and dynamic 
handwriting used separately. Diaz et al. [12] later analyzed handwriting dynamics, 
including pen pressure and stroke speed, using online acquisition tools. Their 
model, combining 1D convolutions and BiGRUs, excelled in detecting Parkinsonian 
symptoms, achieving superior results on PaHaW and competitive performance on 
NewHandPD.

Lamba et al. [13] utilized the UCI PD Spiral Drawings dataset to extract 29 kine-
matic features from the time-series data for both static and dynamic tests. These 
features included metrics such as the number of strokes, speed, rate of change of 
displacement, rate of change of acceleration with respect to time, number of changes 
in velocity, and the total time the pen is in the air during the test. To address the 
imbalanced nature of the dataset, the Synthetic Minority Over-sampling Technique 
(SMOTE) was employed. For feature selection, both genetic algorithms and mutual 
information gain methods were applied. The best performance was achieved by 
selecting nine features using the mutual information gain method. This approach 
resulted in a perfect accuracy rate of 100% and an F1 score of 95.79%.

Xu et al. [14] proposed a majority voting approach involving six Random Forest (RF) 
models, each trained separately using different sensor signals from the NewHandPD 
dataset. Each of the six handwritten sensor signals was subsampled into segments 
with a channel length of N = 3000. To address the imbalanced nature of the dataset, 
the authors used stratified five-fold cross-validation. This method ensures that each 
fold maintains the same proportion of class labels as the original dataset, providing 
a more reliable evaluation of the model’s performance. By employing a majority 
voting scheme across the six RF models, the authors achieved an accuracy of 89.40%.

Drotar et al. [15] enhanced PD detection by expanding their handwriting analy-
sis feature set. Original kinematic features included speed, NCV/NCA, writing dura-
tion, stroke velocity, acceleration, jerk, and stroke dimensions [16]. New features 
introduced entropy (Shannon, Renyi) and energy measures (CE, TKE) to assess hand-
writing irregularities. Empirical mode decomposition (EMD) extracted intrinsic data, 
and an SVM with a radial Gaussian kernel classified 39 PD and 38 healthy subjects. 
The best single feature achieved 76% accuracy, while combining 168 features 
improved accuracy to 85.6%.

Table 1 summarizes the discussed works, highlighting the datasets used, 
the types of features employed (static or dynamic), and the highest accuracy 
performances achieved.
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2.3	 Related Works in Medical Image Analysis Using AI

While handwriting analysis for PD detection represents a specific domain of 
biomedical pattern recognition, related studies in other medical contexts have 
demonstrated the versatility and effectiveness of AI and deep learning in disease 
diagnosis. For instance, Al-Nawashi et al. [17] proposed a machine learning frame-
work for breast cancer detection, integrating multiple learning models to enhance 
diagnostic accuracy. Similarly, Gharaibeh et al. [18] introduced a Swin Transformer-
based segmentation and multi-scale feature pyramid fusion module for Alzheimer’s 
disease detection, achieving robust feature extraction and improved classification 
results. Moreover, Al-Hazaimeh et al. [19] combined artificial intelligence and 
image processing for diagnosing diabetic retinopathy from retinal fundus images, 
demonstrating the capacity of AI to identify subtle pathological patterns in medi-
cal imagery.

In addition, Abu-Amara et al. [20] explored robot-based therapy for improving 
academic skills in children with autism, illustrating how intelligent robotic systems 
can support cognitive and motor development through adaptive interaction. 
Furthermore, the authors in [21] integrated robotic kinematics and dynamics with 
online handwriting features for dysgraphia classification, highlighting the potential 
of combining biomechanical and spatiotemporal data with deep learning to improve 
diagnostic precision.

These works collectively reinforce the growing evidence that AI-driven methods—
especially those leveraging transformer architectures and hybrid ML pipelines—can 
effectively capture complex visual and biological patterns across diverse medical 
imaging applications. This cross-domain success further validates the use of deep 
learning and transformer-based models for handwriting-based PD detection.

Table 1. Comparison of PD approaches and performances

Dataset Approach Performance Rate

Diaz [12] PaHaW Static & Dynamic 86.67%

Mitra [6] NewHandPD Static 100%

Agrawal [7] NewHandPD Static 99.8%

Wang [8] HandPD
NewHandPD Static 88.92%

92.68%

Kamran [9] PaHaW
HandPD
NewHandPD
Combined datasets with augmentation

Static

62.50%
90.41%
98.31%
99.22%

Naz [10] HandPD
NewHandPD Static 99.35%

Valla [11] DraWrite
PaHaW Dynamic 84.33%

73.71%

Diaz [15] PaHaW
NewHandPD Dynamic 93.75%

94.44%

Lamba [13] UCI Dataset Dynamic 96.02%

Xu [14] NewHandPD Dynamic 89.40%

Drotar [16] PaHaW Dynamic 88.13%

https://online-journals.org/index.php/i-joe


	 138	 International Journal of Online and Biomedical Engineering (iJOE)	 iJOE | Vol. 22 No. 1 (2026)

Bensefia et al.

3	 METHODOLOGY

One of the prominent motor symptoms associated with PD is hand tremors. These 
tremors can significantly impact hand control, leading to difficulties in performing 
fine motor tasks such as handwriting. Consequently, there is significant interest 
in exploring handwriting analysis for detecting this condition, as highlighted in 
existing literature. This involves analyzing hand movements during the process of 
handwriting acquisition, either through online trace analysis or by examining hand 
movements recorded by smart pens. However, despite the acknowledged benefits, 
such as non-invasiveness and cost-effectiveness, the literature has not extensively 
explored the use of offline handwriting analysis for diagnosing PD. Offline hand-
writing analysis offers several advantages, including providing a non-invasive and 
economical means for detection and monitoring of the disease. Given that PD affects 
motor control and may cause changes in handwriting, analyzing handwriting 
samples presents a convenient approach to assessing motor symptoms.

3.1	 Datasets

Various datasets have been used for the automatic detection of PD through 
handwriting analysis. To evaluate our model, we used the four publicly available 
datasets, namely HandPD, NewHandPD, PaHaW, and UCI. The details and the 
preparation process of each dataset are described in the following sections:

HandPD dataset. HandPD is a dataset specifically designed for PD, comprising 
handwritten samples from two groups: a healthy control group and a PD patient 
group. The data were collected at Botucatu Medical School, São Paulo State University, 
Brazil [22].

The dataset includes 18 healthy individuals (six males and 12 females) aged 
between 19 and 79 years, and 74 PD patients (59 males and 15 females) aged 
between 38 and 78 years. In terms of handedness, the control group included 16 
right-handed and two left-handed individuals, with a mean age of 44.22 ± 16.53 
years. The patient group, on the other hand, comprised 69 right-handed and five 
left-handed individuals, demonstrating a mean age of 58.75 ± 7.51 years. To con-
struct the dataset, each subject completes a series of tasks, including drawing circles, 
Archimedean spirals, and meanders on a prefilled form. In this study, we focus on 
analyzing the Archimedean spiral drawing.

Dataset Preparation. The handwritten traces (blue traces) were drawn on top of 
a predefined spiral template (black traces), where the two traces overlap and inter-
twine, which makes them unusable for our model, as shown in Figure 1; therefore, 
a cleaning phase was needed to separate the two traces. To this end, and to identify 
the blue trace within each image, we established a thresholding mechanism for each 
channel of the RGB color space as follows:

	 BlueTrace
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Where Ii represents the pixel’s original intensity, R, G, and B represent the 
different intensities of the pixel i in the image I on the channels Red, Green, and 
Blue, respectively, and TR, TG, and TB represent the thresholds of the three channels 
set experimentally. Samples of the resulting images are illustrated in Figure 1.
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Fig. 1. HandPD Archimedean spiral drawing samples before (a) and after removing the blue lines

NewHandPD dataset. The improved HandPD dataset [23], known as 
NewHandPD, includes 66 individuals divided into two groups: healthy and 
patient. The healthy group consists of 35 individuals (18 male, 17 female) with an 
average age of 44 years, while the patient group includes 31 individuals (21 male, 
10 female) with an average age of 58 years. Each participant completed 12 exams, 
generating nine images and 12 signals per individual, including spirals, mean-
ders, circular movements, and diadochokinetic tasks. During the samples’ col-
lection, handwritten dynamics were recorded by means of a smart pen, which 
means we have images from spirals (4), meanders (4), circles on the paper (1), 
and signals for all 12 exams. In total, the dataset contains 264 images and 792 
signals, offering a more balanced and comprehensive set of data than the original 
HandPD dataset.

In our study, for consistency purposes, we considered only the Archimedean 
spiral samples, which included 124 samples from PD subjects and 140 samples from 
healthy subjects. These samples were processed according to the procedure applied 
to the HandPD samples to separate the handwritten traces (blue traces) from the 
pre-defined spiral template. Ultimately, we obtained 64 exploitable samples from 
healthy subjects and 124 samples from PD subjects (see Figure 2a).

UCI dataset. This dataset was created at the Department of Neurology in the 
Cerrahpasa Faculty of Medicine, Istanbul University [24]. 62 people with PD and 15 
healthy subjects were asked to create drawings using developed software for coordi-
nation tests. Three types of tests were developed for data collection using a graphics 
tablet. The first is the static spiral test (SST), commonly used in clinical research to 
assess motor performance, measure tremors, and diagnose PD. In this test, patients 
are required to retrace Archimedean spirals displayed on the tablet. Data, including 
the features mentioned, are recorded during the test. The second test is the dynamic 
spiral test (DST). Unlike the SST, the Archimedean spiral in this test blinks on and off 
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at intervals, requiring patients to remember the pattern. Most patients struggled to 
retain the pattern, resulting in poorer performance compared to the SST. The third 
test is the stability test on a certain point (STCP). In this test, subjects are asked to hold 
the digital pen on a red point in the center of the screen without touching it for a set 
duration. The aim is to assess hand stability or tremor levels.

For our experiments, we opted to use only the SST samples, as they were collected 
using a similar approach as the other datasets. As with the PaHaW dataset, the 
selected samples were processed to create binary images based on the x and y 
coordinates of each pen position (see Figure 2b).

Fig. 2. Archimedean spiral drawing samples of healthy and patient subjects from  
(a) NewHandPD dataset, (b) UCI dataset, and (c) PaHaW dataset

PaHaW dataset. The PaHaW dataset was developed at the Department of 
Neurology, Masaryk University, and St. Anne’s University Hospital in Brno, Czech 
Republic [25]. It includes data from 37 (PD) patients (19 men and 18 women) and 
38 healthy control subjects (20 men and 18 women). All participants were asked 
to provide handwriting and drawing samples by following a template consisting 
of eight different tasks, including the Archimedean spiral drawing. These samples 
were captured using a tablet, with various features such as pen movement, coordi-
nates, and pressure being recorded.

To achieve results comparable with other approaches, we focused solely on the 
Archimedean samples. These samples were processed to create binary images based 
on the x and y coordinates of each pen position (see Figure 2c).

3.2	 Data augmentation

To address the issue of unbalanced datasets, with a disproportionate number 
of samples between healthy and patient subjects, as well as the challenge posed by 
datasets with relatively low sample sizes, we have implemented data augmentation 
techniques to increase the number of samples. These techniques include horizontal 
flips, vertical flips, scaling, and noise adjustment operations. These augmentations 
are beneficial to our system architecture described in the following section.
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Table 2 summarizes the original number of samples for each dataset, as well as 
the final number of samples after augmentation.

Table 2. Datasets size before and after augmentation

Datasets
Original Dataset Original Dataset with Augmentation

Healthy Subject Patient Subject Healthy Subject Patient Subject

HandPD 72 296 360 1480

NewHandPD 64 124 320 620

PaHaW 36 36 180 180

UCI 15 25 75 125

All Datasets 187 481 935 2405

3.3	 System architecture

We propose a neural network architecture that comprises two modules of layers: 
convolutional layers and dense layers, both designed to extract hierarchical fea-
tures from the handwritten traces’ images for classification either as PD trace or 
healthy subjects.

Convolutional neural networks (CNNs) are integral in computer vision for their 
ability to learn hierarchical patterns from images, crucial for tasks like image 
classification and object detection. By mimicking the human visual cortex, CNNs 
capture pixel-level relationships efficiently. Our deep learning model employs a CNN 
to analyze handwritten samples, focusing on detecting patterns in Archimedean  
spiral drawings to identify Parkinson’s disease patients.

The model begins with an image input layer, accepting grayscale images of 
size 96 × 96 pixels. Subsequently, the first module of three convolutional layers is 
employed to convolve input feature maps with learnable filters, followed by recti-
fied linear unit (ReLU) activation functions to introduce non-linearity. Since we need 
to preserve the tiny details in the input images, we began the convolution with a 
filter size of 7 × 7 followed by filters of 3 × 3.

Batch normalization layers are applied after each convolutional layer to stabilize 
training by normalizing the activations. Additionally, cross-channel normalization 
layers are utilized to enhance the response of specific neurons. Max pooling layers 
are then employed to down-sample feature maps, reducing spatial dimensions while 
preserving essential information.

The module of convolutional layers is followed by a module of dense layers made 
up of two fully connected layers, which serve as the classifier by learning high-level 
representations of the input features. Each fully connected layer is connected to all 
neurons in the previous layer, enabling complex feature combinations to be learned. 
Dropout layers are inserted after the fully connected layers to prevent overfitting by 
randomly dropping a fraction of the neurons during training. The final layer of the 
network is a softmax layer, which computes the probability distribution over the 
classes and facilitates multi-class classification. The softmax layer is coupled with a 
classification layer, which computes the loss and accuracy metrics during training.

The model is trained using the stochastic gradient descent with momentum 
(SGDM) optimization algorithm, with an initial learning rate of 0.001. The training 
process is executed for a maximum of 25 epochs, with data shuffled at every epoch. 
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Validation data is used to monitor the model’s performance and prevent overfitting, 
with validation occurring every 30 iterations.

4	 EXPERIMENTATION AND RESULTS

Although there is no universal agreement on the split ratio for datasets between 
training and testing, we have opted for an 80/20 (training/test) division, which is 
commonly used. In the first stage, the experiments were conducted on all the differ-
ent datasets separately and then by combining them all into one large dataset. This 
scenario has been repeated for datasets with and without augmentation. For each 
dataset, we varied the number of samples used when applicable. Specifically, we 
tested our system with a balanced number of samples between healthy and patient 
subjects, as well as with an unbalanced number of samples.

To evaluate our model as accurately as possible, we ran the model five times, 
reshuffling the samples with each iteration, and reported the highest and average 
accuracy (including standard deviation). The loss scores for training and testing, as 
well as the specificity, sensitivity, and F1 scores for the maximum accuracy, were 
recorded for each scenario. The results of these experiments are summarized in 
Tables 3 and 4.

Table 3. Performance on the datasets without augmentation

Dataset # Samples 
Healthy:PD

Accuracy Loss Confusion Matrix
(TP, FN/FP, TN)

Sensitivity: 
Specificity F1-Score

Max Mean Std Train Test

HandPD 72: 72
72: 296

90.41
94.52

87.95
92.05

0.022
0.017

0.l01
0.127

0.346
0.244

72, 0/8, 64
254, 42/2, 70

100.00:89.39
85.71:96.61

66.67
85.71

NewHandPD 64: 64
64: 124

92.31
94.74

83.03
88.95

0.079
0.039

0.140
0.232

0.238
0.157

64, 0/9, 55
124, 0/5, 59

100.00:86.67
100.00:92.59

91.67
91.67

PaHaW 36: 36 87.93 75.71 0.139 0.143 0.459 32, 4/0, 36 87.50:100.00 93.33

UCI 15: 15
15: 25

100
100

83.33
92.50

0.117
0.111

0.003
0.069

0.007
0.100

15, 0/0, 15
25, 0/0, 15

100.00:100.00
100.00:100.00

100.0
100.0

All Datasets 187:187
187:481

91.89
92.48

87.03
89.02

0.036
0.022

0.197
0.167

0.216
0.192

176, 11/19, 168
450, 31/15, 172

94.29:89.74
93.55:92.16

91.67
85.29

Table 4. Performance on the datasets with augmentation

Dataset # Samples 
(Healthy:PD)

Accuracy Loss Confusion Matrix
(TP, FN/FP, TN)

Sensitivity: 
Specificity F1-Score

Max Mean Std Train Test

HandPD 360:360
360:1480

92.36
97.28

91.25
96.14

0.012
0.014

0.035
0.029

0.281
0.085

323, 37/16, 344
1435, 45/10, 350

89.61:95.52
96.97:97.35

92.62
92.75

NewHandPD 320: 320
320: 620

96.09
97.34

94.37
96.28

0.017
0.013

0.027
0.041

0.104
0.062

320, 0/23, 297
600, 20/8, 312

100.00:92.75
96.83:97.60

95.93
96.06

PaHaW 180:180 90.28 86.94 0.036 0.160 0.265 164, 16/19, 161 91.4:89.19 90.14

UCI 75:75
75:125

100.00
97.50

94.67
92.00

0.038
0.062

0.066
0.074

0.029
0.083

75, 0/0, 75
117, 8/0, 75

100.00:100.00
93.75:100.00

100.0
96.77

All Datasets 935:935
935:2405

93.85
96.71

92.94
96.05

0.007
0.007

0.043
0.026

0.191
0.125

859, 76/37, 898
2311, 94/29, 906

91.84:96.07
96.09:96.93

93.99
93.99
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The obtained results clearly demonstrate the excellent performances of our 
approach for PD diagnosis. Even without data augmentation, our model achieved 
high performances across multiple datasets, suggesting a discernible link between 
handwriting patterns and the presence of PD. Accuracy on the larger HandPD and 
NewHandPD datasets reached up to 94.74%, demonstrating the relevance of our 
approach. While smaller datasets, such as UCI and PaHaW, exhibited higher vari-
ance, likely due to their limited size, their performance also reinforces the con-
nection between handwriting and PD. This baseline performance establishes the 
viability of handwriting as a potential diagnostic marker.

However, the results also highlight the challenges posed by limited data and 
class imbalance, common issues in medical datasets. While reasonable accuracy 
was achieved, further analysis of sensitivity and specificity revealed potential 
biases. Models trained on the original data sometimes struggled to achieve a per-
fect balance between correctly identifying PD patients (sensitivity) and healthy 
individuals (specificity). This is where data augmentation becomes a crucial tool. 
Indeed, our experiments with data augmentation (refer to Table 4), significantly 
enhance the diagnostic capabilities of the system, acting as a powerful technique 
to address these challenges. By generating synthetic samples, augmentation effec-
tively increases the size and balance of the training data, allowing the models to 
learn more robust and generalized patterns. The impact is clearly visible across 
all datasets.

With augmentation, a substantial improvement in accuracy is observed. On the 
larger HandPD and NewHandPD datasets, accuracy surpasses 97%, demonstrating 
the power of this technique to refine diagnostic precision. When all the datasets 
are combined, the metric reflects this trend, with average accuracy increasing 
from 89.02% without augmentation to 96.05% with augmentation. This improve-
ment underscores the value of data augmentation for extracting the full diagnostic 
potential from handwriting data.

Beyond accuracy, data augmentation significantly improves the balance between 
sensitivity and specificity. By mitigating the effects of class imbalance, augmentation 
allows the models to more reliably identify both PD patients and healthy individuals. 
This is crucial for a diagnostic tool, ensuring that the system is both accurate and 
equitable in its classifications. The impact of augmentation is also reflected in the 
loss values. Lower loss values in the augmented models indicate better convergence 
and learning, suggesting that the models are more effectively capturing the under-
lying patterns associated with PD. Furthermore, the reduced standard deviation 
of accuracy across multiple runs indicates that augmentation contributes to more 
stable and reliable performance.

By analyzing the confusion matrices generated for each dataset, we identified 
specific samples that our model misclassified (see Figure 3). These misclassified 
samples exhibited high intra-class variability, making it difficult, even for human 
experts, to accurately assign them to their respective classes. This suggests that 
the model’s behavior is largely consistent with human judgments based on the 
available data.

Overall, our model demonstrates strong performance and reliability in detecting 
PD through handwriting analysis. The ability to achieve high accuracy rates, even 
on challenging datasets with high intra-class variability, highlights the effectiveness 
of our approach.
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Fig. 3. Our model false acceptance (a) and false rejection (b) samples

5	 CONCLUSION

In conclusion, this paper has explored the feasibility of diagnosing PD through 
offline handwriting analysis, focusing on the motor symptom of hand tremors. 
By proposing an exploration of offline handwriting analysis for PD diagnosis and 
presenting a novel deep learning model architecture, this study contributes to the 
growing body of research in this area. The experiments conducted on four differ-
ent datasets demonstrate a high accuracy rate in classifying PD and healthy control 
subjects based on handwriting traces, highlighting the potential of offline hand-
writing analysis as a non-invasive and cost-effective diagnostic tool for PD. Future 
research should explore the robustness and generalizability of the approach across 
diverse populations and refine the model to improve diagnostic accuracy. Overall, 
this study underscores the importance of leveraging digital health technologies to 
advance detection and management strategies for Parkinson’s disease.
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