Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/156189
| Título: | Autoencoder-Based Drift Detection Method for Dynamic Analysis of EEG Data: A Comprehensive Study | Autores/as: | Khadimallah, Rihab Kallel, Ilhem Medina, Javier Sanchez Drira, Fadoua |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | EEG Data Machine learning Data distribution Attention Deficit Hyperactivity Disorder Neurological Disorders, et al. |
Fecha de publicación: | 2024 | Conferencia: | IEEE International Conference on Systems, Man, and Cybernetics, SMC 2024 | Resumen: | In distributed data environments, the properties and probabilities of the data may evolve over time creating an occurrence called Concept Drift. Indeed, ensuring the effectiveness and dependability of machine learning models is greatly dependent on concept drift detection, especially in areas where the distribution of data is affected by periodic changes. Hence, in dynamic environments, such as EEG datasets, the concept drift poses an important challenge. This study presents the autoencoder approach for identifying concept drift in EEG datasets made up of children with normal development and ADHD (Attention Deficit Hyperactivity Disorder). After conducting many tests with different window sizes, we determined the number of batches in the two datasets (Normal and ADHD). The experimental results show how well the suggested technique works to identify shifts in the distributions of EEG data, which helps to maintain precise prediction models in dynamic settings. | URI: | https://accedacris.ulpgc.es/jspui/handle/10553/156189 | ISSN: | 1062-922X | DOI: | 10.1109/SMC54092.2024.11169744 | Fuente: | Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics[ISSN 1062-922X], p. 4654-4659, (Enero 2024) |
| Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.