Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/156189
Campo DC Valoridioma
dc.contributor.authorKhadimallah, Rihaben_US
dc.contributor.authorKallel, Ilhemen_US
dc.contributor.authorMedina, Javier Sanchezen_US
dc.contributor.authorDrira, Fadouaen_US
dc.date.accessioned2026-01-27T09:31:58Z-
dc.date.available2026-01-27T09:31:58Z-
dc.date.issued2024en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/156189-
dc.description.abstractIn distributed data environments, the properties and probabilities of the data may evolve over time creating an occurrence called Concept Drift. Indeed, ensuring the effectiveness and dependability of machine learning models is greatly dependent on concept drift detection, especially in areas where the distribution of data is affected by periodic changes. Hence, in dynamic environments, such as EEG datasets, the concept drift poses an important challenge. This study presents the autoencoder approach for identifying concept drift in EEG datasets made up of children with normal development and ADHD (Attention Deficit Hyperactivity Disorder). After conducting many tests with different window sizes, we determined the number of batches in the two datasets (Normal and ADHD). The experimental results show how well the suggested technique works to identify shifts in the distributions of EEG data, which helps to maintain precise prediction models in dynamic settings.en_US
dc.languageengen_US
dc.sourceConference Proceedings - IEEE International Conference on Systems, Man and Cybernetics[ISSN 1062-922X], p. 4654-4659, (Enero 2024)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherEEG Dataen_US
dc.subject.otherMachine learningen_US
dc.subject.otherData distributionen_US
dc.subject.otherAttention Deficit Hyperactivity Disorderen_US
dc.subject.otherNeurological Disordersen_US
dc.subject.otherUnsupervised learningen_US
dc.subject.otherBrain activityen_US
dc.subject.otherNeural activityen_US
dc.subject.otherData Pre-processingen_US
dc.subject.otherUnderlying Data Distributionen_US
dc.subject.otherFeed-forward Networken_US
dc.titleAutoencoder-Based Drift Detection Method for Dynamic Analysis of EEG Data: A Comprehensive Studyen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceIEEE International Conference on Systems, Man, and Cybernetics, SMC 2024en_US
dc.identifier.doi10.1109/SMC54092.2024.11169744en_US
dc.identifier.scopus105027641041-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57222516545-
dc.contributor.authorscopusid6506336769-
dc.contributor.authorscopusid59562890900-
dc.contributor.authorscopusid55953892600-
dc.identifier.eissn2577-1655-
dc.description.lastpage4659en_US
dc.description.firstpage4654en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2024en_US
dc.identifier.conferenceidevents156134-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
Colección:Actas de congresos
Adobe PDF (2,66 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.