Please use this identifier to cite or link to this item:
https://accedacris.ulpgc.es/jspui/handle/10553/155617
| Title: | Hyperspectral Technology to Monitor Marine Pollution | Authors: | Pérez García, Ámbar Rodriguez Molina, Adrian Hernández Suárez, Emma Cristina Martín Lorenzo, Alba López Feliciano, José Francisco Gutiérrez, Daniel and Millán, Pablo and Blasco, Julian |
UNESCO Clasification: | 33 Ciencias tecnológicas | Issue Date: | 2026 | Publisher: | Springer | Abstract: | Marine pollution is a pressing environmental issue with profound implications for ecosystems, biodiversity, and human livelihood. This chapter delves into the transformative role of hyperspectral imaging in monitoring and mitigating pollution in marine environments. Pollutants such as oil spills and plastics are particularly impactful, causing severe damage in the short term or remaining persistently in the marine environment. Hyperspectral images provide unparalleled precision in detecting these contaminants by capturing detailed spectral information across hundreds of narrow bands. The chapter introduces key advancements, including specialised spectral indices that allow real-time detection. Band selection methodologies are highlighted as tools to identify the most relevant spectral features, improve pollutant classification, and facilitate machine learning (ML) model transfer across diverse environments. Emerging technologies, such as specialised multispectral sensors integrated into cost-effective platforms like CubeSats, demonstrate the potential for scalable environmental monitoring. Additionally, cloud computing platforms enable efficient processing of vast datasets, enhancing the global accessibility of hyperspectral imaging (HSI) solutions. While these innovations address critical challenges in data complexity and model generalisation, the chapter underscores the need for interdisciplinary collaboration to refine these methods and integrate them into policy frameworks. These tools offer a path towards more effective marine pollution management and ocean stewardship. | URI: | https://accedacris.ulpgc.es/jspui/handle/10553/155617 | ISBN: | 978-3-032-03048-1 | DOI: | 10.1007/978-3-032-03049-8_4 | Source: | Smart Water Quality Monitoring: Artificial Intelligence, Automation and Analytical Chemistry |
| Appears in Collections: | Capítulo de libro |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.