Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/155034
| Título: | Mapping Emotions in the Brain: A Bi-Hemispheric Neural Model with Explainable Deep Learning | Autores/as: | Freire Obregón, David Sebastián Dubiel, Agnieszka Vinodkumar, Prasoon Kumar Anbarjafari, Gholamreza Kamińska, Dorota Castrillón Santana, Modesto Fernando |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Brain Mapping Brain-machine Interface Emotion Theory Evoked potentials Neural encoding, et al. |
Fecha de publicación: | 2026 | Editor/a: | Springer | Proyectos: | Interaccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social Infraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods) |
Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 23rd International Conference on Image Analysis and Processing (ICIAP 2025) | Resumen: | Recent advances have shown promise in emotion recognition from electroencephalogram (EEG) signals by employing bi-hemispheric neural architectures that incorporate neuroscientific priors into deep learning models. However, interpretability remains a significant limitation for their application in sensitive fields such as affective computing and cognitive modeling. In this work, we introduce a post-hoc interpretability framework tailored to dual-stream EEG classifiers, extending the Local Interpretable Model-Agnostic Explanations (LIME) approach to accommodate structured, bi-hemispheric inputs. Our method adapts LIME to handle structured two-branch inputs corresponding to left and right-hemisphere EEG channel groups. It decomposes prediction relevance into per-channel contributions across hemispheres and emotional classes. We apply this framework to a previously validated dual-branch recurrent neural network trained on EmoNeuroDB, a dataset of EEG recordings captured during a VR-based emotion elicitation task. The resulting explanations reveal emotion-specific hemispheric activation patterns consistent with known neurophysiological phenomena, such as frontal lateralization in joy and posterior asymmetry in sadness. Furthermore, we aggregate local explanations across samples to derive global channel importance profiles, enabling a neurophysiologically grounded interpretation of the model’s decisions. Correlation analysis between symmetric electrodes further highlights the model’s emotion-dependent lateralization behavior, supporting the functional asymmetries reported in affective neuroscience. | URI: | https://accedacris.ulpgc.es/jspui/handle/10553/155034 | ISBN: | 978-3-032-11380-1 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-032-11381-8_19 | Fuente: | Image Analysis and Processing - ICIAP 2025 Workshops. Lecture Notes in Computer Science, vol 16170, p. 21 5–227 ( January 2026) |
| Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.