Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/155034
Título: Mapping Emotions in the Brain: A Bi-Hemispheric Neural Model with Explainable Deep Learning
Autores/as: Freire Obregón, David Sebastián 
Dubiel, Agnieszka
Vinodkumar, Prasoon Kumar
Anbarjafari, Gholamreza
Kamińska, Dorota
Castrillón Santana, Modesto Fernando 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Brain Mapping
Brain-machine Interface
Emotion Theory
Evoked potentials
Neural encoding, et al.
Fecha de publicación: 2026
Editor/a: Springer 
Proyectos: Interaccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social 
Infraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods) 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 23rd International Conference on Image Analysis and Processing (ICIAP 2025)
Resumen: Recent advances have shown promise in emotion recognition from electroencephalogram (EEG) signals by employing bi-hemispheric neural architectures that incorporate neuroscientific priors into deep learning models. However, interpretability remains a significant limitation for their application in sensitive fields such as affective computing and cognitive modeling. In this work, we introduce a post-hoc interpretability framework tailored to dual-stream EEG classifiers, extending the Local Interpretable Model-Agnostic Explanations (LIME) approach to accommodate structured, bi-hemispheric inputs. Our method adapts LIME to handle structured two-branch inputs corresponding to left and right-hemisphere EEG channel groups. It decomposes prediction relevance into per-channel contributions across hemispheres and emotional classes. We apply this framework to a previously validated dual-branch recurrent neural network trained on EmoNeuroDB, a dataset of EEG recordings captured during a VR-based emotion elicitation task. The resulting explanations reveal emotion-specific hemispheric activation patterns consistent with known neurophysiological phenomena, such as frontal lateralization in joy and posterior asymmetry in sadness. Furthermore, we aggregate local explanations across samples to derive global channel importance profiles, enabling a neurophysiologically grounded interpretation of the model’s decisions. Correlation analysis between symmetric electrodes further highlights the model’s emotion-dependent lateralization behavior, supporting the functional asymmetries reported in affective neuroscience.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/155034
ISBN: 978-3-032-11380-1
ISSN: 0302-9743
DOI: 10.1007/978-3-032-11381-8_19
Fuente: Image Analysis and Processing - ICIAP 2025 Workshops. Lecture Notes in Computer Science, vol 16170, p. 21 5–227 ( January 2026)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.