Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/155034
| Campo DC | Valor | idioma |
|---|---|---|
| dc.contributor.author | Freire Obregón, David Sebastián | en_US |
| dc.contributor.author | Dubiel, Agnieszka | en_US |
| dc.contributor.author | Vinodkumar, Prasoon Kumar | en_US |
| dc.contributor.author | Anbarjafari, Gholamreza | en_US |
| dc.contributor.author | Kamińska, Dorota | en_US |
| dc.contributor.author | Castrillón Santana, Modesto Fernando | en_US |
| dc.date.accessioned | 2026-01-14T19:54:43Z | - |
| dc.date.available | 2026-01-14T19:54:43Z | - |
| dc.date.issued | 2026 | en_US |
| dc.identifier.isbn | 978-3-032-11380-1 | en_US |
| dc.identifier.issn | 0302-9743 | en_US |
| dc.identifier.uri | https://accedacris.ulpgc.es/jspui/handle/10553/155034 | - |
| dc.description.abstract | Recent advances have shown promise in emotion recognition from electroencephalogram (EEG) signals by employing bi-hemispheric neural architectures that incorporate neuroscientific priors into deep learning models. However, interpretability remains a significant limitation for their application in sensitive fields such as affective computing and cognitive modeling. In this work, we introduce a post-hoc interpretability framework tailored to dual-stream EEG classifiers, extending the Local Interpretable Model-Agnostic Explanations (LIME) approach to accommodate structured, bi-hemispheric inputs. Our method adapts LIME to handle structured two-branch inputs corresponding to left and right-hemisphere EEG channel groups. It decomposes prediction relevance into per-channel contributions across hemispheres and emotional classes. We apply this framework to a previously validated dual-branch recurrent neural network trained on EmoNeuroDB, a dataset of EEG recordings captured during a VR-based emotion elicitation task. The resulting explanations reveal emotion-specific hemispheric activation patterns consistent with known neurophysiological phenomena, such as frontal lateralization in joy and posterior asymmetry in sadness. Furthermore, we aggregate local explanations across samples to derive global channel importance profiles, enabling a neurophysiologically grounded interpretation of the model’s decisions. Correlation analysis between symmetric electrodes further highlights the model’s emotion-dependent lateralization behavior, supporting the functional asymmetries reported in affective neuroscience. | en_US |
| dc.language | eng | en_US |
| dc.publisher | Springer | en_US |
| dc.relation | Interaccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social | en_US |
| dc.relation | Infraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods) | en_US |
| dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
| dc.source | Image Analysis and Processing - ICIAP 2025 Workshops. Lecture Notes in Computer Science, vol 16170, p. 21 5–227 ( January 2026) | en_US |
| dc.subject | 120304 Inteligencia artificial | en_US |
| dc.subject.other | Brain Mapping | en_US |
| dc.subject.other | Brain-machine Interface | en_US |
| dc.subject.other | Emotion Theory | en_US |
| dc.subject.other | Evoked potentials | en_US |
| dc.subject.other | Neural encoding | en_US |
| dc.subject.other | Electroencephalography | en_US |
| dc.title | Mapping Emotions in the Brain: A Bi-Hemispheric Neural Model with Explainable Deep Learning | en_US |
| dc.type | book_content | en_US |
| dc.relation.conference | 23rd International Conference on Image Analysis and Processing (ICIAP 2025) | en_US |
| dc.identifier.doi | 10.1007/978-3-032-11381-8_19 | en_US |
| dc.description.lastpage | 227 | en_US |
| dc.description.firstpage | 215 | en_US |
| dc.relation.volume | 16170 | en_US |
| dc.investigacion | Ingeniería y Arquitectura | en_US |
| dc.type2 | Actas de congresos | en_US |
| dc.identifier.eisbn | 978-3-032-11381-8 | - |
| dc.utils.revision | Sí | en_US |
| dc.date.coverdate | January 2026 | en_US |
| dc.identifier.ulpgc | Sí | en_US |
| dc.contributor.buulpgc | BU-INF | en_US |
| dc.description.sjr | 0,606 | |
| dc.description.sjrq | Q2 | |
| dc.description.miaricds | 10,0 | |
| item.fulltext | Sin texto completo | - |
| item.grantfulltext | none | - |
| crisitem.project.principalinvestigator | Castrillón Santana, Modesto Fernando | - |
| crisitem.project.principalinvestigator | Hernández Tejera, Francisco Mario | - |
| crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
| crisitem.author.dept | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.dept | Departamento de Informática y Sistemas | - |
| crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
| crisitem.author.dept | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.dept | Departamento de Informática y Sistemas | - |
| crisitem.author.orcid | 0000-0003-2378-4277 | - |
| crisitem.author.orcid | 0000-0002-8673-2725 | - |
| crisitem.author.parentorg | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.parentorg | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.fullName | Freire Obregón, David Sebastián | - |
| crisitem.author.fullName | Castrillón Santana, Modesto Fernando | - |
| Colección: | Actas de congresos | |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.