Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/155034
Campo DC Valoridioma
dc.contributor.authorFreire Obregón, David Sebastiánen_US
dc.contributor.authorDubiel, Agnieszkaen_US
dc.contributor.authorVinodkumar, Prasoon Kumaren_US
dc.contributor.authorAnbarjafari, Gholamrezaen_US
dc.contributor.authorKamińska, Dorotaen_US
dc.contributor.authorCastrillón Santana, Modesto Fernandoen_US
dc.date.accessioned2026-01-14T19:54:43Z-
dc.date.available2026-01-14T19:54:43Z-
dc.date.issued2026en_US
dc.identifier.isbn978-3-032-11380-1en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/155034-
dc.description.abstractRecent advances have shown promise in emotion recognition from electroencephalogram (EEG) signals by employing bi-hemispheric neural architectures that incorporate neuroscientific priors into deep learning models. However, interpretability remains a significant limitation for their application in sensitive fields such as affective computing and cognitive modeling. In this work, we introduce a post-hoc interpretability framework tailored to dual-stream EEG classifiers, extending the Local Interpretable Model-Agnostic Explanations (LIME) approach to accommodate structured, bi-hemispheric inputs. Our method adapts LIME to handle structured two-branch inputs corresponding to left and right-hemisphere EEG channel groups. It decomposes prediction relevance into per-channel contributions across hemispheres and emotional classes. We apply this framework to a previously validated dual-branch recurrent neural network trained on EmoNeuroDB, a dataset of EEG recordings captured during a VR-based emotion elicitation task. The resulting explanations reveal emotion-specific hemispheric activation patterns consistent with known neurophysiological phenomena, such as frontal lateralization in joy and posterior asymmetry in sadness. Furthermore, we aggregate local explanations across samples to derive global channel importance profiles, enabling a neurophysiologically grounded interpretation of the model’s decisions. Correlation analysis between symmetric electrodes further highlights the model’s emotion-dependent lateralization behavior, supporting the functional asymmetries reported in affective neuroscience.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relationInteraccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Socialen_US
dc.relationInfraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods)en_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceImage Analysis and Processing - ICIAP 2025 Workshops. Lecture Notes in Computer Science, vol 16170, p. 21 5–227 ( January 2026)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherBrain Mappingen_US
dc.subject.otherBrain-machine Interfaceen_US
dc.subject.otherEmotion Theoryen_US
dc.subject.otherEvoked potentialsen_US
dc.subject.otherNeural encodingen_US
dc.subject.otherElectroencephalographyen_US
dc.titleMapping Emotions in the Brain: A Bi-Hemispheric Neural Model with Explainable Deep Learningen_US
dc.typebook_contenten_US
dc.relation.conference23rd International Conference on Image Analysis and Processing (ICIAP 2025)en_US
dc.identifier.doi10.1007/978-3-032-11381-8_19en_US
dc.description.lastpage227en_US
dc.description.firstpage215en_US
dc.relation.volume16170en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-3-032-11381-8-
dc.utils.revisionen_US
dc.date.coverdateJanuary 2026en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,606
dc.description.sjrqQ2
dc.description.miaricds10,0
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.project.principalinvestigatorCastrillón Santana, Modesto Fernando-
crisitem.project.principalinvestigatorHernández Tejera, Francisco Mario-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.parentorgIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.