Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/154941
DC FieldValueLanguage
dc.contributor.authorPerez Contreras, Jorge Edmundoen_US
dc.contributor.authorVillaseca-Vicuna, Rodrigoen_US
dc.contributor.authorLoro Ferrer, Juan Franciscoen_US
dc.contributor.authorInostroza-Rios, Felipeen_US
dc.contributor.authorBrito, Ciro Joseen_US
dc.contributor.authorCerda-Kohler, Hugoen_US
dc.contributor.authorBustamante-Garrido, Alejandroen_US
dc.contributor.authorMunoz-Hinrichsen, Fernandoen_US
dc.contributor.authorHermosilla Palma, Felipe Andrésen_US
dc.contributor.authorUlloa-Diaz, Daviden_US
dc.contributor.authorMerino-Munoz, Pabloen_US
dc.contributor.authorAedo-Munoz, Estebanen_US
dc.date.accessioned2026-01-13T18:49:13Z-
dc.date.available2026-01-13T18:49:13Z-
dc.date.issued2025en_US
dc.identifier.issn2076-3417en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/154941-
dc.description.abstractBackground: Muscle injuries are among the main problems in professional soccer, affecting player availability and team performance. Countermovement jump (CMJ) variables have been proposed as indicators of injury risk and for detecting strength imbalances, although their use is less explored than isokinetic assessments. Unlike previous studies based solely on linear statistics, this research integrates biomechanical data with machine learning approaches, providing a novel perspective for injury prediction in elite soccer. Objective: To examine the association between CMJ variables and muscle injury risk during a competitive season, considering injury incidence and effective playing minutes. It was hypothesized that specific CMJ asymmetries would be associated with a higher injury risk, and that machine learning algorithms could accurately classify players according to their injury status. Methods: Forty-one professional soccer players (18 women, 23 men) from national league teams (Chile) were assessed during preseason using force platforms. Non-contact muscle injuries and playing minutes were recorded over 10 months after the CMJ evaluations. Analyses included two-way ANOVA (sex x injury status) and machine learning algorithms (Logistic Regression, Decision Tree, K-Nearest Neighbors [KNN], Random Forest, Gradient Boosting [GB]). Results: Significant sex differences were observed in most variables (p < 0.05 and eta(2)(p) > 0.11), except peak force and peak power asymmetry. For injury status, only peak force asymmetry differed, while sex x injury interactions were found in peak power and left peak power. KNN (Accuracy = 87% and CI 95% = 71% to 96%) and GB (Accuracy = 84% and CI 95% = 68% to 94%) achieved the best classification performance between injured and non-injured players. Conclusions: CMJ did not show consistent statistical differences between injured and non-injured groups. However, machine learning models, particularly KNN and GB, demonstrated high predictive accuracy, suggesting that injuries are a complex phenomenon characterized by non-linear patterns. These findings highlight the potential of combining CMJ with machine learning approaches for functional monitoring and early detection of injury risk, though validation in larger cohorts is required before establishing clinical thresholds and preventive applications.en_US
dc.languageengen_US
dc.relation.ispartofApplied Sciencesen_US
dc.sourceApplied Sciences [eISSN 2076-3417],v. 15 (23), (Diciembre 2025)en_US
dc.subject2411 Fisiología humanaen_US
dc.subject.otherElite Maleen_US
dc.subject.otherMuscle Injuriesen_US
dc.subject.otherFootballen_US
dc.subject.otherPerformanceen_US
dc.subject.otherPredictionen_US
dc.subject.otherQuadricepsen_US
dc.subject.otherAsymmetryen_US
dc.subject.otherRatioen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherAthletic Injuriesen_US
dc.subject.otherVertical Jumpen_US
dc.subject.otherMuscle Strengthen_US
dc.subject.otherFootballen_US
dc.subject.otherForce Platformen_US
dc.titleAre Countermovement Jump Variables Indicators of Injury Risk in Professional Soccer Players? A Machine Learning Approachen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/app152312721en_US
dc.identifier.isi001635233300001-
dc.identifier.eissn2076-3417-
dc.identifier.issue23-
dc.relation.volume15en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Pérez-Contreras, J-
dc.contributor.wosstandardWOS:Villaseca-Vicuña, R-
dc.contributor.wosstandardWOS:Loro-Ferrer, JF-
dc.contributor.wosstandardWOS:Inostroza-Ríos, F-
dc.contributor.wosstandardWOS:Brito, CJ-
dc.contributor.wosstandardWOS:Cerda-Kohler, H-
dc.contributor.wosstandardWOS:Bustamante-Garrido, A-
dc.contributor.wosstandardWOS:Muñoz-Hinrichsen, F-
dc.contributor.wosstandardWOS:Hermosilla-Palma, F-
dc.contributor.wosstandardWOS:Ulloa-Díaz, D-
dc.contributor.wosstandardWOS:Merino-Muñoz, P-
dc.contributor.wosstandardWOS:Aedo-Muñoz, E-
dc.date.coverdateDiciembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-FISen_US
dc.description.sjr0,277
dc.description.sjrqQ3
dc.description.miaricds9,8
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUIBS: Bioquímica-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Clínicas-
crisitem.author.orcid0000-0002-0517-8209-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNamePerez Contreras, Jorge Edmundo-
crisitem.author.fullNameLoro Ferrer, Juan Francisco-
crisitem.author.fullNameHermosilla Palma, Felipe Andrés-
Appears in Collections:Artículos
Adobe PDF (498,2 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.