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Abstract

Background: Muscle injuries are among the main problems in professional soccer, affect-
ing player availability and team performance. Countermovement jump (CMJ) variables
have been proposed as indicators of injury risk and for detecting strength imbalances,
although their use is less explored than isokinetic assessments. Unlike previous studies
based solely on linear statistics, this research integrates biomechanical data with machine
learning approaches, providing a novel perspective for injury prediction in elite soccer.
Objective: To examine the association between CMJ variables and muscle injury risk during
a competitive season, considering injury incidence and effective playing minutes. It was
hypothesized that specific CMJ asymmetries would be associated with a higher injury
risk, and that machine learning algorithms could accurately classify players according to
their injury status. Methods: Forty-one professional soccer players (18 women, 23 men)
from national league teams (Chile) were assessed during preseason using force platforms.
Non-contact muscle injuries and playing minutes were recorded over 10 months after the
CMJ evaluations. Analyses included two-way ANOVA (sex × injury status) and machine
learning algorithms (Logistic Regression, Decision Tree, K-Nearest Neighbors [KNN], Ran-
dom Forest, Gradient Boosting [GB]). Results: Significant sex differences were observed
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in most variables (p < 0.05 and ηp
2 > 0.11), except peak force and peak power asymmetry.

For injury status, only peak force asymmetry differed, while sex × injury interactions were
found in peak power and left peak power. KNN (Accuracy = 87% and CI 95% = 71% to
96%) and GB (Accuracy = 84% and CI 95% = 68% to 94%) achieved the best classification
performance between injured and non-injured players. Conclusions: CMJ did not show
consistent statistical differences between injured and non-injured groups. However, ma-
chine learning models, particularly KNN and GB, demonstrated high predictive accuracy,
suggesting that injuries are a complex phenomenon characterized by non-linear patterns.
These findings highlight the potential of combining CMJ with machine learning approaches
for functional monitoring and early detection of injury risk, though validation in larger
cohorts is required before establishing clinical thresholds and preventive applications.

Keywords: machine learning; athletic injuries; vertical jump; muscle strength; football;
force platform

1. Introduction
Currently, sport has positioned itself as a phenomenon of high scientific and social

interest, backed by funding from public institutions and support from private entities,
particularly sports clubs. In this scenario, professional soccer has established itself as
one of the disciplines with the highest investment, development, and participation [1].
This physically demanding team sport is characterized by its intermittent nature and by
the combination of medium- and high-intensity actions that require explosive muscular
efforts [1,2]. However, these demands bring with them a high risk of injury, due to
external factors such as the number of matches, weather conditions, and the type/level
of competition and opponents, as well as internal factors such as physical condition,
compatible health, and physical load [3–5]. When these athletes are injured, they generate
high financial costs for sports clubs due to treatment and rehabilitation costs, and the loss
of value in the transfer market. Therefore, identifying factors that influence the incidence
and type of injury is crucial for optimizing training loads [6].

Despite specialized physical training, professional soccer has a high incidence of
injuries, with muscle injuries being the most common [7,8]. Several studies have reported
that approximately one-third of injuries in high-performance sports are muscular, of which
92% are non-contact injuries, mainly in the quadriceps, hamstrings, adductors, and calf
muscle groups [9]. These types of injuries not only affect player availability but also have
an impact on team performance, sporting results, and team planning [10,11]. The incidence
of injuries is influenced by multiple factors such as playing position, competitive category,
stage of the match, accumulated load, congestion of matches, and effective participation
time [3,12]. In this regard, the literature has shown an increase in the frequency of muscle
injuries during periods of high competitive density [3]. Related to this, several studies
have reported differences based on gender, both in terms of injury severity, incidence, and
affected area [13–15]. This may be due to differences in athletic performance between men
and women, differences in athletic ability among women, or the presence of asymmetries
in the lower extremities [16].

Recent research has delved into kinetic and biomechanical variables as indicators of
fatigue, intensity, and risk of injury [17–19]. Particular attention has been given to the
presence of asymmetries between limbs in capacities such as strength and power, which
have been associated with both decreased performance and an increased likelihood of
injury [20,21]. Therefore, monitoring these parameters has become essential for optimizing



Appl. Sci. 2025, 15, 12721 3 of 14

training, reducing the risk of injury, and prolonging the soccer player’s athletic career. One
of the tests that has been used to determine kinetic variables is the countermovement jump
(CMJ) due to its reliability and validity [22]. This test provides relevant variables such as
peak force, rate of force development, duration of muscle contraction phases (concentric
and eccentric), and maximum power, among others [23]. Evidence has shown that these
variables can be used as potential predictors of injury risk in sports, as stated by Benavides
Ormaza & Cuadrado Peñafiel [24], who describe the force-velocity profile using variables
obtained from the CMJ and SJ (squat jump) tests, which were performed with external
resistance. This establishes that the profile is a viable factor for determining the risk of injury
to the lower limbs. Similarly, another study in soccer players [25] described that the peak
force of the eccentric phase recorded in the CMJ test was lower in athletes in players who
suffered an injury that left them unable to train for more than three months. However, they
also did not analyze whether asymmetries in kinetic variables represented an increased risk
of injury among the participating athletes. Therefore, there is still controversy regarding
the role of asymmetries in a CMJ as a risk factor for injury.

A recent systematic review by Pérez-Contreras et al. [26] indicates that kinetic vari-
ables are reliable indicators for estimating the risk of injury in professional soccer players,
mainly due to their ability to reveal strength imbalances between limbs. Monitoring these
variables not only allows for the identification of players with a higher susceptibility to
injury but also guides more effective preventive strategies. This approach aligns with the
current trend toward prevention based on objective data and load control. Despite this,
the literature on injuries in professional soccer has focused predominantly on isokinetic
assessments and muscle ratios [17,19,27–29], while dynamic analyses through vertical
jumps—such as the CMJ—remain less explored, especially in comparisons between men
and women. This gap limits the possibility of establishing practical parameters for mon-
itoring in real-world settings, where isokinetic tests are costly and not easily accessible.
Recent research has advanced the integration of biomechanical data with machine learning
algorithms to predict injury risk more effectively in elite soccer. In particular, one study
demonstrated that explainable machine learning models based on kinetic and kinematic
variables can accurately predict muscle injuries in professional players [30]. Similarly,
another study highlighted in a systematic review found that countermovement jump (CMJ)
parameters, together with neuromuscular and functional assessments, are promising in-
dicators for injury-risk monitoring in sport [31]. Addressing this gap has a significant
practical impact: clubs and coaching staff require simple, valid, and accessible tools to
identify risk factors and reduce the incidence of muscle injuries, which are one of the main
causes of inactivity in professional soccer [6,18]. This study aims to examine the association
between countermovement jump (CMJ) variables and muscle injury risk throughout a
competitive season, considering injury incidence and effective playing minutes. Beyond
traditional linear approaches, this research integrates biomechanical data with machine
learning models to improve the understanding and prediction of injury risk in professional
soccer. These findings may contribute to the development of individualized monitoring
strategies and data-driven preventive programs in elite soccer environments.

2. Materials and Methods
2.1. Design

This study is a non-experimental exploratory quantitative research project with a
prospective cohort design, whose objective was to determine the association between CMJ
variables and effective playing minutes, assessed in the preseason, and the occurrence of
non-contact muscle injuries during the competitive season in male and female professional
soccer players [32].
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2.2. Sample

The sample consisted of 41 (20 suffered injury and 21 not suffered injury) professional
soccer players categorized in Tier 3–4 according to the classification framework [33], selected
by convenience sampling, divided into two groups: women (n = 18; Age = 23.0 ± 5.3 years;
Weight = 58.9 ± 6.5 kg; Height = 164 ± 6.2 cm) and men (n = 23; Age = 21.7 ± 1.4 years;
Weight = 70.3 ± 6.6 kg; Height = 176.1 ± 6.5 cm). The inclusion and exclusion criteria
considered players belonging to the professional teams of each club and registered in the
national competition (Chile). Only those players who did not present musculoskeletal
injuries that limited their participation at the time of the evaluation and who had not
suffered injuries that prevented them from training regularly during the two weeks prior
to the tests were included.

2.3. Ethical Considerations

The study was conducted according to the guidelines of the Declaration of Helsinki [34]
and approved by the Institutional Ethics Committee of University Hospitals Virgen
Macarena and Virgen del Rocío from Seville, Spain (C.P. RENFEFUTCHILE C.I. 2355-
N-20, 28 June 2021). All participants held valid federation licenses and had undergone
medical evaluations at the start of the season, meeting the requirements set by the Chilean
Soccer Federation. The evaluations were conducted in the absence of injuries or discomfort,
without altering the usual practice or introducing additional risks beyond those inherent to
the activity.

2.4. Procedures

The assessments were carried out during the preseason, on the second day of the
weekly microcycle, in the morning, after a week of familiarization with the procedures.
A standardized three-phase warm-up protocol was applied. The general phase included
a joint mobility exercise, a ballistic stretching exercise, and two core activation exercises
(front plank, glute bridge). The exercises were performed in circuit format, with 20 s of
work, 20 s of rest, and 3 rounds of the circuit. The specific phase included a squat and lunge
exercise, performing 3 sets of 10 repetitions of each exercise. Finally, the third phase was
test familiarization, in which 2 sets of 3 CMJs were performed. All tests were performed
using appropriate sports shoes.

2.4.1. Instruments

Two PASCO® portable force platforms were used, specifically the PS-2141 model
(PASCO Scientific, Roseville, CA, USA), which have been validated for the evaluation
of vertical jumps [35,36]. Measurements were taken at a sampling frequency of 1000 Hz
using Pasco Capstone software (version 2.3.1.1), and the data obtained were exported to
a spreadsheet. The force platforms were tared (button) before each assessment (Force in
0 newtons). The records were then processed and analyzed using scripts written by the
authors in MATLAB (version R2024a, MathWorks Inc., Natick, MA, USA).

2.4.2. Countermovement Jump (CMJ)

To assess the CMJ, participants started in an upright position, with both feet flat on
the force platforms and their hands on their hips. After a countdown by the evaluator (“3,
2, 1, go!”), they were instructed to perform a quick knee bend followed by a vertical jump,
trying to lift themselves off the ground as high and as fast as possible. The importance
of landing with both feet completely inside the force plates was emphasized in order to
validate the attempt. Jumps involving arm movements, asymmetrical take-off or landing,
or any deviation from the technical protocol were excluded from the statistical analysis.
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Three attempts were performed per subject with 20 s of rest between attempts. The test
was administered by a professional with experience in physical assessments and the use
of force plates, ensuring the correct execution of the procedure and the validity of the
data collected. The following variables were calculated: Jump height through flight time,
peak force bilateral (summing force of two force platforms), peak force for leg, peak power
bilateral (power was obtained through double integration of force by derivate time and
multiplying by force [velocity x force], summing power of two force platforms), peak power
for leg and peak of force rate of development (first derivate of force of time instantaneously
[1 ms windows]) of braking phase. Asymmetry index was calculated for peak force and
power as follows: (left − right)/((left + right)/2) × 100.

2.4.3. Injury Monitoring

Throughout the competitive season, both contact and non-contact muscle injuries
were recorded for each participant. Only non-contact injuries were included in the analysis.
The classification proposed by Mueller-Wohlfahrt et al. [37] was used solely as a reference
to define and categorize muscle injuries during data collection; however, the specific
injury types were not analyzed, as the final data set was dichotomized as “injured” or
“non-injured”). The follow-up was conducted over the course of one competitive season
(10 months).

2.5. Statistical Analysis

The distribution of the variables was analyzed using the Shapiro–Wilk test and his-
togram visualization, and a normal distribution was assumed (p > 0.05). The Levene test
was applied, and homogeneity of variances was assumed (p > 0.05). The descriptive statis-
tics were described with mean and standard deviation. Two-way ANOVA was applied
(sex and injury state) to compare the groups, and post hoc test with Tukey correction was
applied if the interaction effect was significant. The effect size partial eta-squared (ηp

2)
was calculated and was categorized following standard thresholds: 0 to 0.01 trivial; 0.01
to 0.06 small; 0.061 to 0.13 moderate; and >0.14 large [38]. The alpha level was set at 0.05.
The analysis was performed in JASP (version 0.19.3; JASP Team, University of Amsterdam,
Amsterdam, The Netherlands).

2.6. Machine Learning Analysis

For the binary classification tasks (yes or no injury), the following machine learning
algorithms were used: Logistic Regression (LR), Decision Tree (DT), K-nearest neighbors
(KNN), Random Forest (RF), Gradient Boosting (GB) and Neural Network feedforward
(NNF). LR was employed to set the baseline performance obtained by a linear model. DT
was evaluated, providing a more interpretable decision-making mechanism. KNN was
selected due to its ability to address the overfitting problems that arise in high-dimensional
spaces. Random Forest (RF), which is an ensemble learning algorithm, is used due to
its fast execution speed and increased model performance. GB was included because it
iteratively builds weak learners to minimize prediction errors, thereby improving accuracy
and robustness, especially in non-linear relationships, and NNF was also tested because
it can handle complex data. Table 1 shows the hyperparameters tested in the training
process for each model. Firstly, the data set was divided into training (70%) and test
(30%), using a stratified sampling defined by injury and sex, and later the training data
set was scaled (mean 0 and standard deviation 1), and using the mean and standard
deviation from this data set, the test data set was scaled to avoid data leakage. The Boruta
algorithm was used for feature selection using a training data set [39] (Figure 1). Boruta
is a wrapper feature selection method built upon the Random Forest classifier, designed
to detect all variables carrying information useful for predicting the target outcome. The
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algorithm operates by creating shadow features, which are shuffled copies of the original
variables that serve as a baseline for comparison. A Random Forest model is iteratively
trained using both the original and shadow features, and the importance of each real
variable is statistically compared with the highest importance achieved among its shadow
counterparts. Variables that consistently outperform the shadow features are classified as
Confirmed, those that perform worse are Rejected, and those with ambiguous importance
are labeled Tentative. Boruta was executed for 99 iterations, ensuring convergence and
stable importance rankings across the evaluated predictors. After completion, the function
TentativeRoughFix() was applied to re-evaluate the tentative variables and assign them a
final status. This procedure ensured that the subsequent models were trained exclusively
on the most informative subset of features, minimizing redundancy and potential noise.
Repeated five times 10-fold cross-validation was performed. Models were evaluated in
the test data set for accuracy (with confidence interval of 95%), sensitivity, specificity,
and area under the curve (AUC). For all classification models developed in this study,
predictions were obtained in probabilistic form on the independent test set. To convert
these probabilities into binary class labels, an optimized decision threshold was applied
instead of the default value of 0.5. The optimal threshold was determined empirically by
analyzing the Receiver Operating Characteristic (ROC) curve and selecting the cutoff point
that maximized both sensitivity and specificity. Model performance was subsequently
evaluated through the confusion matrix, providing accuracy, sensitivity, specificity, and
predictive values, while the Area Under the ROC Curve (AUC) was calculated to quantify
overall discriminative performance. The following packages were used for this task in
RStudio (version 2024.12.1; Posit Software, PBC, Boston, MA, USA): caret, RNSSS, and
NeuralNetTools [40–42]. Additionally, for the algorithm with higher accuracy, we used
SHapley Additive exPlanations (SHAP), which are based on Shapley values of game
theory [43]. SHAP offers the ability to interpret the machine learning algorithms, which are
often treated as black boxes [44], and was applied in the training data set. The algorithm
computes Shapley values that represent the average marginal contribution of each variable
across all possible combinations of features, thus providing a consistent and theoretically
grounded measure of variable importance. Specifically, 50 random permutations were
performed to estimate the marginal contribution of each variable (only in the higher accuracy
model). This procedure allowed for a detailed quantification of the direction and magnitude
of each variable’s influence on the model’s predictions, providing an interpretable framework
for understanding the relative contribution of the selected features to injury classification.

Table 1. Summary of the machine learning models trained and their hyperparameter configurations.

Model Main Tuned Hyperparameters Grid Values Tested Notes

K-Nearest
Neighbors

kmax (number of neighbors),
distance (metric), kernel

(weighting function)

kmax = 3–15 (odd numbers);
distance = {1, 2};

kernel = {“rectangular”, “gaussian”}

Euclidean (2) and Manhattan (1)
distances compared.

Decision Tree cp (complexity parameter,
pruning depth)

10 automatically generated cp values
(tuneLength = 10)

Standard CART
minimizing impurity.

Random Forest mtry (variables per split), ntree
(number of trees) mtry = 1–11; ntree = {50, 100, 200} Custom RF wrapper used

Artificial
Neural

Network

size (hidden units), decay (L2
regularization), maxit (iterations)

size = 2–14; decay = {0, 0.1, 0.5};
maxit = 200

Single hidden-layer
feedforward neural network.

Logistic
Regression

family (binomial), link function,
maxit (iterations)

family = binomial(link = “logit”);
maxit = 50

Standard logistic
regression model.

Gradient
Boosting

interaction.depth, n.trees,
shrinkage, n.minobsinnode

interaction.depth = 2–8; n.trees = {50,
100, 200}; shrinkage = {0.1, 0.01, 0.001};

n.minobsinnode = {2, 4, 6}

Uses stochastic gradient
boosting with bag fraction = 0.7.
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Figure 1. Boruta feature selection, expressed using box plots. Red box variables are unimportant and
deleted; green boxes are variables selected for the training data set. PP_R peak power right leg; JH
jump height; PRFD peak rate of force development; PP_l peak power left leg; PP peak power bilateral;
PF_l peak force left leg; Min minutes played in matches; PP_A peak power asymmetry; PF_A peak
force asymmetry; PF peak force bilateral; PF_R peak force right leg.

3. Results
Table 2 shows the descriptive statistics and comparisons between factors (sex and

injury). All variables have differences (p < 0.05) between sexes, except asymmetry of peak
force and peak power (p > 0.05). Later, for the injury factor, only the asymmetry peak force
has differences (p < 0.05). For the interaction effect (gender and injury status), differences
were found in peak power and left peak power (p < 0.05).

Table 2. Descriptive and comparative results.

No Injury Injury ANOVA

Female Male Female Male Sex Injury Interaction

Variables M ±SD M ±SD M ±SD M ±SD p ηp
2 p ηp

2 p ηp
2

Age (years) 22.3 4.9 21.9 1.4 23.8 5.4 21.3 1.3 0.038 0.039 0.526 0.004 0.105 0.024
Body mass

(kg) 59.3 6.6 72.3 5.5 58.6 6.2 68.6 7.1 <0.001 0.450 0.065 0.031 0.227 0.013

Minutes (min) 1.391 505 902 706 1.15 466 1.10 801 0.032 0.041 0.898 <0.001 0.081 0.027
Jump height

(cm) 28.5 3.4 39.2 5.2 27.2 3.1 39.6 4.0 <0.001 0.665 0.566 0.003 0.285 0.010

Peak Force
(N/kg) 23.4 1.5 25.8 2.3 23.4 1.6 26.1 1.7 <0.001 0.320 0.749 <0.001 0.662 0.002

Right peak
force (N/kg) 23.8 2.8 26.0 2.5 23.9 2.0 26.2 2.2 <0.001 0.187 0.720 0.001 0.992 <0.001

Left peak force
(N/kg) 23.1 1.7 25.5 3.1 22.9 1.9 26.2 1.9 <0.001 0.280 0.583 0.003 0.306 0.010

Asymmetry
peak force (%) 11.7 8.1 10.2 7.8 9.0 6.8 6.6 4.6 0.142 0.020 0.017 0.051 0.707 0.001

Peak power
(W/kg) 41.8 3.6 56.0 6.7 39.5 4.7 58.4 5.2 <0.001 0.706 0.956 <0.001 0.023 0.046

Right peak
power (W/kg) 43.2 9.9 58.1 8.8 42.6 8.7 59.1 7.5 <0.001 0.451 0.896 <0.001 0.647 0.002

Left peak
power (W/kg) 41.6 9.3 54.6 13.3 37.3 7.6 59.2 11.3 <0.001 0.392 0.963 <0.001 0.033 0.041

Asymmetry
Peak

power (%)
32.7 21.8 25.7 20.9 27.3 22.7 20.9 18 0.089 0.026 0.197 0.015 0.927 <0.001

Peak RFD
(N/s) 9355 3595 13,258 5382 10,195 3444 13,586 6424 <0.001 0.116 0.544 0.003 0.790 <0.001

Abbreviations: SD: standard deviation; p: p-value; RFD: rate of force development, ηp
2: partial eta-squared.

Significant results are highlighted in bold.
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Boruta algorithm (Figure 1) selects the following variables: right peak force, peak force,
age, asymmetry peak force, asymmetry peak power, minutes and left peak force, as the
most relevant variables for predicting injury risk. Figure 1 shows the variables selected for
the Boruta algorithm. Table 3 shows the performance of the machine learning algorithms
trained. KNN (Accuracy = 87% and CI 95% = 71% to 96%) and GB (Accuracy = 84% and CI
95% = 68% to 94%) have the best performance among the trained algorithms.

Table 3. Performance metrics of machine learning algorithms.

Algorithms Accuracy LL 95% UL 95% SE SP AUC

Logistic Regression 60% 42% 77% 87% 35% 0.5
K-Nearest Neighbors 87% 71% 96% 81% 96% 0.87

Decision Tree 48% 30% 66% 43% 52% 0.48
Random Forest 75% 57% 88% 62% 88% 0.81

Gradient Boosting 84% 68% 94% 75% 94% 0.90
Neural Network 78% 61% 91% 93% 64% 0.84

Abbreviations: LL: lower limit; UL: upper limit; SE: sensitivity; SP: specificity; AUC: area under the curve. The
algorithm with the best performance is highlighted in bold.

Figure 2a shows the importance of variables of gradient boosting with SHAP; this
displays the mean absolute contribution of each predictor to the model’s output. This rep-
resentation quantifies the overall influence of each feature on the predictions, irrespective
of whether the effect increases or decreases the injury probability. Variables with higher
mean absolute SHAP values exert greater global impact on the model’s decision process.
Figure 2b shows an example of one subject analyzed; the variables are displayed in order
of importance, and each one has a bar graph, which can be positive or negative. Bars to
the right indicate that the feature increases the prediction. Bars to the left indicate that
the feature decreases prediction (pulling the prediction toward the positive class). Final
prediction (f(x)): After summing all feature contributions to the base value, the graph
shows the model’s final prediction for that observation. In this case, the variables that most
influence the classification as injured are peak force of the right leg (PF_R) and minutes
played (Min), with negative values; to change this subject’s classification to non-injured,
we would have to increase the values of PF_R and Min.

 
(a) (b) 

Figure 2. (a) Importance of variables with SHapley Additive exPlanations (SHAP) analysis for
gradient boosting. Higher values mean a more important variable. PP_R peak power right leg; Min
minutes played in matches PP_l peak power left leg; PF_l peak force left leg; PF peak force bilateral;
PF_A peak force asymmetry; PP_A peak power asymmetry. (b) Individual variable contribution
according to SHAP and predict the class of one subject (injured).
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4. Discussion
Sports injuries are a complex, multifactorial problem in which linear, single-metric

screens often fail to capture the underlying risk. In this context, brief neuromuscular
actions, such as the CMJ, likely embed distributed, non-linear information related to injury
status; yet, much of this signal is lost when reduced to simple group contrasts. Rather
than implying a universal “injured versus non-injured” signature, our results align with
a systems perspective where interactions among neuromuscular performance, sex, and
exposure history shape the phenotype. Accordingly, CMJ should serve within an integrated
monitoring framework, with interpretable machine learning complementing statistics to
model complexity and guide cautious, evidence-based translation and practice.

4.1. Asymmetry as a Sex-Invariant Marker and Its Link to Injury Status

Related to differences between sexes, the analysis of variance identified large differ-
ences (η2p > 0.14) between men and women in CMJ performance variables. This was to
be expected given the anthropometric and physical differences between the sexes [45,46].
However, a crucial finding was that strength and power asymmetries showed no differences
between sexes. This result suggests that limb imbalance is a risk factor independent of sex,
and positioning asymmetry is a universally relevant variable to monitor in both groups.

Peak force asymmetry was the only kinetic variable that differed statistically between
the injured and uninjured groups, although with a small effect size. Contrary to previous
reports, which have shown substantial asymmetries in concentric and eccentric strength
between soccer players with and without previous injuries, suggesting that a previous
injury predisposes to such asymmetries during a CMJ [47]. Injured players had lower mean
asymmetry values (9.0% in women; 6.6% in men) than uninjured players (11.7% and 10.2%,
respectively), both remaining below the 15% risk threshold [48]. This seemingly contra-
dictory result could be explained by the fact that athletes with pre-existing impairments
may develop compensatory strategies that mask the true neuromuscular deficit during a
CMJ, resulting in artificially measured asymmetry [25]. Thus, low asymmetry could be an
indicator of an altered and inefficient neuromuscular strategy that predisposes to injury.
The low bilateral CMJ sensitivity for detecting these deficits, compared to its unilateral
version [25], may influence this finding. However, a kinematic analysis would be required
to better understand this phenomenon. It is likely that movement strategies during the
jump influence the reaction force against the ground of each limb.

4.2. Sex Effects and Sex × Injury Interactions in Power Metrics

A small, significant interaction effect was found between sex and injury status for the
variables peak power and peak left power. Injured men showed higher power values than
uninjured men, while the opposite trend was observed in women. This counterintuitive
finding warrants further investigation. A possible hypothesis is that in men, higher power
levels may be associated with exposure to greater loads or a more explosive playing style,
whereas in women, lower power values could reflect suboptimal neuromuscular capacity
that increases vulnerability [49,50]. A systematic review concluded that there is moderate
evidence linking the risk of musculoskeletal injury to performance in horizontal and vertical
non-countermovement jumps, but not to countermovement jumps (CMJ); however, these
results are based on height and distance achieved, not on the power produced [48]. On the
other hand, the relative power (W/kg) produced in a unilateral CMJ has been associated
with a higher risk of non-contact ankle injury (OR = 9.2 [95% CI = 1.13–75.09]) in male
amateur soccer players [50]. The results of this study reinforce the evidence and suggest
that it could be extrapolated to the female population, although the risk mechanisms may
differ between the sexes [51].
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4.3. Machine Learning for Injury Risk: Feature Relevance, Predictive Performance,
and Interpretability

Machine learning validated the relevance of kinetic variables, particularly asymme-
tries, for predicting the risk of non-contact injuries. The Boruta algorithm selected right
peak force, peak force, asymmetry peak force, asymmetry peak power, and left peak force
as the most relevant kinetic variables. This highlights the multifactorial nature of injury,
integrating complex interactions that traditional statistical models overlook [51]. The iden-
tification of strength and power variables as key predictors is consistent with the findings
of Bird et al. [52], who found that high-performance neuromuscular movement strategies
(relative power) were associated with a lower risk of injury. This convergence suggests that
the ability to generate force quickly and symmetrically is a critical and modifiable factor in
preventing injury.

The superior predictive power of our KNN and GB models (AUC of 0.87–0.92) con-
trasts sharply with the results reported by Oliver et al. [53] and Merrigan et al. [54]. They
found that, although machine learning radically improved sensitivity compared to logistic
regression (55.6% vs. 15.2%), overall accuracy (AUC ≈ 0.66) remained moderate. For their
part, they reported that a logistic regression model based on CMJ strength-time metrics
and injury history completely failed to predict injuries in the test set (sensitivity = 0%).
The disparity in predictive performance can be attributed to several key methodological
differences. Our study used a more diverse set of machine learning algorithms and applied
rigorous variable selection with the Boruta algorithm, which identified a concise set of
predictors. The findings reinforce that strength asymmetry between the lower limbs can
predispose athletes to non-contact injuries. Likewise, the importance of asymmetry peak
power aligns with Henry et al. [50], who found that low relative power increased the risk
of injury by 9.2 times. This synergy highlights the importance of incorporating power and
symmetry training into prevention programs.

The SHAP analysis applied to the Gradient Boosting model provided interpretabil-
ity, confirming that strength asymmetry is the variable with the most significant predic-
tive power.

4.4. Limitations and Future Directions

These findings should be considered in the context of the study’s limitations. The
generalizability of the findings and the reliability of the machine learning models may
have been impacted by sample limitations, specifically their small size and unequal gender
distribution, which increases the likelihood of overfitting. Future studies should aim for
larger, prospectively recruited cohorts with balanced gender representation to enhance
model robustness and external validity.

The study’s methodology did not control for the participants’ history of earlier acute
injuries, which is a key limitation given the well-documented impact of prior injury on neu-
romuscular asymmetry and subsequent injury risk [47]. Future studies should incorporate
prospective injury history registration and comprehensive screening protocols to control
for this critical confounding variable. Furthermore, the binary definition of injury status
oversimplifies the underlying complexity of injury mechanisms and could benefit from a
more granular analysis that considers the type, severity, and timing of the injury [54].

Finally, it would be pertinent for future studies to explore the accuracy, sensitivity, and
specificity of other variables of the force-time curve, such as components of the eccentric
phase, as well as to explore the potential of unilateral CMJ asymmetry variables [25].
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4.5. Practical Applications

From an applied perspective, the results support the use of the CMJ for monitoring
injury risk in the context of professional soccer. The routine assessment of maximum force
asymmetries using CMJ with force platforms positions asymmetry peak force as a key safety
indicator to be monitored, enabling timely decision-making and adjustments to training
load. It should be emphasized that asymmetries below 15% should not be automatically
interpreted as safe, as they could mask compensatory strategies for underlying neuro-
muscular deficits. Finally, although the CMJ in isolation showed discriminative capacity,
its integration within a comprehensive assessment battery is recommended for a holistic
evaluation. It is essential to remember that predicting injuries is inherently complex [53].
Therefore, these models should be viewed as tools to support decision-making by teams
of professionals.

5. Conclusions
This study did not identify consistent differences in CMJ kinetic variables between

injured and non-injured soccer players, although significant sex-related differences were
observed in most parameters. Regarding injury status, only peak force asymmetry showed
differences between groups, while the sex × injury interaction revealed differences in peak
power and left peak power. Moreover, machine learning algorithms, particularly KNN
and Gradient Boosting, achieved high predictive accuracy, and Boruta and SHAP analyses
highlighted the relevance of variables such as peak force and power asymmetry, peak
RFD, and jump height. These findings suggest that injuries are a complex and non-linear
phenomenon in which asymmetries play a significant role, and that combining CMJ with
machine learning models may represent a valuable tool for functional monitoring and
early detection of injury risk factors in professional soccer. However, these results should
be interpreted with caution, as they are preliminary and require validation in larger and
more diverse cohorts. From a practical standpoint, integrating CMJ-derived metrics into
regular monitoring protocols could enhance practitioners’ ability to identify and manage
injury risk more effectively. Ultimately, these insights may contribute to the development of
evidence-based, data-driven strategies for injury prevention and performance optimization
in elite soccer.
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