Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154917
Título: Early Wildfire Detection and Identification in High Depth-of-Field Scenarios Using LWIR Thermal Imaging from Ground-Based Systems
Autores/as: Galván Hernández, Antonio David 
Araña Pulido, Víctor Alexis 
Cabrera-Almeida, Francisco 
Quintana-Morales, Pedro J. 
Clasificación UNESCO: Investigación
Palabras clave: Early Detection And Identification
High Depth Of Field
Incipient Fire
Lwir Thermal Image
Fecha de publicación: 2025
Publicación seriada: IEEE Transactions on Geoscience and Remote Sensing 
Resumen: This paper presents a novel hybrid framework that integrates spatial and temporal processing techniques for detecting and identifying incipient fires. By combining thermal imaging with a core detector, based on an object detection model, and a secondary detector, leveraging temporal features, the framework significantly enhances the detection of thermal anomalies and the identification of fires using raw Long-Wave Infrared (LWIR) thermal imaging. The framework was tested with different core detectors, trained using the Thermal Anomaly (TA) dataset, on the Fire’s Latent Activity Monitoring and Evaluation through Thermography (FLAME-T) dataset, achieving improvements in mean Average Precision (mAP) and F1 scores of up to 35.9% and 20.9%, respectively, with the addition of the secondary detector. Although these improvements introduced higher processing times, the framework demonstrated its capability to maintain high detection accuracy even on a resource-constrained platform like the Raspberry Pi 5. The proposed novel identification algorithm achieves high classification accuracy for early fires at a significant depth of field, with accuracies of up to 0.913 and identification times of approximately 2 ms, making it suitable for edge applications.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/154917
ISSN: 0196-2892
DOI: 10.1109/TGRS.2025.3644384
Fuente: IEEE Transactions on Geoscience and Remote Sensing[ISSN 0196-2892], (Enero 2025)
Colección:Artículos
Adobe PDF (4,04 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.