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Abstract—This paper presents a novel hybrid framework that
integrates spatial and temporal processing techniques for detect-
ing and identifying incipient fires. By combining thermal imaging
with a core detector, based on an object detection model, and a
secondary detector, leveraging temporal features, the framework
significantly enhances the detection of thermal anomalies and
the identification of fires using raw Long-Wave Infrared (LWIR)
thermal imaging. The framework was tested with different core
detectors, trained using the Thermal Anomaly (TA) dataset, on
the Fire’s Latent Activity Monitoring and Evaluation through
Thermography (FLAME-T) dataset, achieving improvements in
mean Average Precision (mAP) and F1 scores of up to 35.9%
and 20.9%, respectively, with the addition of the secondary detec-
tor. Although these improvements introduced higher processing
times, the framework demonstrated its capability to maintain
high detection accuracy even on a resource-constrained platform
like the Raspberry Pi 5. The proposed novel identification
algorithm achieves high classification accuracy for early fires at
a significant depth of field, with accuracies of up to 0.913 and
identification times of approximately 2 ms, making it suitable
for edge applications. The code and data needed to replicate this
work are available at: https://github.com/AntonioIDeTIC/IFTH.

Index Terms—Incipient fire, Early detection and identification,
LWIR thermal image, High depth of field.

I. INTRODUCTION

W ILDFIRES pose a global threat, requiring efficient
early detection and precise monitoring systems to

mitigate their impact. While the urgency of addressing this
challenge is evident, effective fire detection in environments
with high depth of field, such as rugged terrains and distant
landscapes, remains difficult due to technological limitations
and environmental influences [1].
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Early wildfire detection is essential to prevent rapid spread,
yet existing remote sensing approaches vary in effectiveness.
Satellite-based systems, though useful for large-scale mon-
itoring, struggle with early detection due to low temporal
resolution, atmospheric interference, and detectable fire size
[2], [3]. For instance, the Himawari-8 satellite provides ob-
servations every 10 minutes, while Meteosat SEVIRI updates
every 5 to 15 minutes, limiting real-time detection [4], [5]. In
contrast, ground-based and Unmanned Aerial Vehicle (UAV)-
based systems provide faster localized detection of smaller
fires before they escalate. These systems typically employ
visual and thermal cameras [6], [7]. Visual sensors rely on
color, motion, and texture cues but degrade under low visi-
bility [8], while thermal cameras in the Long-Wave Infrared
(LWIR) band detect fires even in smoke or low-light conditions
[9]. However, several previous works on wildfire detection
using ground-based or UAV-based systems have relied on 8-
bit LWIR images, either processed frames or Red, Green,
Blue/Infrared (RGB/IR) merges, thus losing the sensor’s native
radiometric resolution of 14 to 16 bits.

Recent research has advanced the field of wildfire detection
by introducing diverse datasets and methodologies, each ad-
dressing specific challenges in fire monitoring and detection.
Shamsoshoara et al. presented the FLAME dataset with aerial
imagery of prescribed burns, achieving 92% precision and
84% recall for pixel-level fire segmentation using U-Net, and
76% accuracy in binary fire classification with a modified
Xception network [10]. Chen et al. extended this with the
FLAME 2 dataset, incorporating dual RGB/IR imagery to
benchmark fusion methods, showing detection accuracy above
94% using state-of-the-art deep learning models [11]. Rui et al.
proposed an adaptive modality learning network that improved
IoU by 6.41% and F1-score by 3.39% under difficult lighting
conditions [12]. Jong et al. showed that conventional datasets
fail to generalize in wildfire contexts, but incorporating WIT-
UAS data reduced false positives and improved accuracy with
YOLOv3 and SSD, reaching an mAP of 0.566 [13].

Although many previous approaches fuse visual and thermal
imagery to exploit spatial cues such as texture, color, and
flicker from visible flames or smoke, they struggle in long-
range, high depth-of-field settings where terrain complexity
and varying distances obscure traditional fire signatures [14],
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[15], [16]. Rugged landscapes with abrupt elevation changes,
distant ravines, or mountains can mask subtle indicators,
while the lack of distance information further complicates
radiometric analysis. Methods tuned to short-range scenarios,
such as low-flying UAVs or nearby ground cameras, benefit
from fires spanning many pixels, where spatial cues remain
clear [14], [17]. At larger distances, incipient fires cover only
a few pixels, erasing texture and shape cues. Moreover, static
heat sources such as sun-heated rocks or vehicle engines can
appear as bright as distant fires, misleading networks trained
on short-range data [18], [19].

Most published methods assume a zenithal viewpoint with
a shallow depth of field, conditions naturally satisfied by
UAVs hovering almost directly above the fire source [14],
[17], [20]. Ground-based systems, however, face less favorable
vantage points dictated by topography, with varying distances
and frequent occlusions. The task, therefore, shifts from local
fire detection to long-range fire identification, demanding
new algorithms that address reduced spatial resolution and
intermittent visibility. This distinction is shown in Figure 1,
where position P1 represents a close-range UAV relying on
visual cues, while position P2 shows a ground or high-altitude
platform operating at much larger distances, where dedicated
long-range strategies are essential.

As illustrated in Figure 1, thermal imaging can highlight
hot spots via intensity thresholds, but confirming true fire
activity requires radiometric analysis, which is influenced by
atmospheric transmissivity, sensor calibration, and lens prop-
erties [21], [22], [23]. Different state-of-the-art studies have
also demonstrated that incorporating temporal information,
specifically by tracking flicker-induced volatility over time,
offers a robust means of distinguishing genuine combustion
dynamics from other heat sources [24], [25].

Building upon the proven efficacy of combined spatial and
temporal analysis for fire detection, a significant challenge
remains in reliably identifying incipient fires within complex
terrains, a problem not thoroughly addressed by current state-
of-the-art methods. This work proposes a hybrid framework
tailored for incipient fire detection in complex terrains. The
framework combines spatial and temporal analysis: a core
detector based on state-of-the-art computer vision models
identifies thermal anomalies with high infrared intensity peaks,
while a secondary detector focuses on high temporal variabil-
ity. Merging both enables reliable identification of genuine
combustion events.

The framework will be executed on a platform with limited
resources, such as the Raspberry Pi 5, demonstrating its
feasibility on low-cost hardware. However, it is not intended
for real-time operation, as the processing of multiple frames is
required to capture meaningful temporal patterns. Laboratory
studies indicate that early fire dynamics unfold within a
relatively short observation window. Flame ignition typically
stabilizes within a few seconds, followed by rapid quadratic
growth of the burned area during the first two minutes,
reaching sub-meter scales before slowing toward equilibrium
[26]. Hotspot fires often merge with the main front within
20–40 seconds, influencing spread behavior over the following
minute [27]. These findings indicate that a time window of
approximately 5–120 seconds may be sufficient to capture
critical fire behaviors in their early stages.

The remainder of this paper is organized as follows: Section
II describes the components and methodology of the proposed
fire detection and identification framework. Section III covers
the datasets, implementation, hardware settings, and evaluation
metrics used. Section IV presents experimental findings, and
Section V concludes with key insights drawn from the results.
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Fig. 1. Theoretical representation between two systems with different depth-of-field perspectives. Thermal image shown in position P1 extracted from [10].
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II. METHODOLOGY

A. Overview

The proposed framework is structured into four key stages:
1) Core Detector: An object detection model is employed

as the core mechanism for the localization of thermal
anomalies, regardless of the nature of the anomaly.
These anomalies are points within an image where
the infrared intensity exceeds the general background
values, suggesting abnormal heat sources.

2) Secondary Detector: The object detection model is the
primary localization tool, but may miss critical early-
stage fire events. The secondary detection step compen-
sates for this by identifying regions with high temporal
variability, which may correspond to early fires. These
regions are also classified as thermal anomalies, as their
exact cause is initially unknown.

3) NMS Post-processing: The results from both detec-
tors are merged using the Non-Maximum Suppression
(NMS) technique, ensuring that all critical anomalies are
preserved without duplication.

4) Identification: The identification algorithm classifies
the detected regions, determining whether the pixels
correspond to potential incipient fire locations.

B. Core Detector

The Maximum Intensity Projection (MIP) metric is used
on a batch of images to enhance the detection of thermal
anomalies across a given time range by capturing the highest
intensity values, improving potential anomaly localization. The
MIP is defined as Equation 1.

MIP(i, j) =
N

max
k=1

Ik(i, j) (1)

where Ik(i, j) represents the intensity value at pixel (i, j) in
the k-th frame.

In this work, models capable of object detection in a
bounding box format, such as Yolov8, Real-Time Detection
Transformer (RT-DETR), a hybrid Yolov8n-RT-DETR model
combining Yolov8 with RT-DETR’s decoder, and a custom
Faster-RCNN model have been evaluated as single-class de-
tectors for thermal imaging.

• Yolov8: Proposed by Ultralytics, this model uses a mod-
ified version of CSPDarknet53 as its backbone, featuring
Convolution (Conv), Cross Stage Partial Bottleneck with
2 convolutions (C2f), and Spatial Pyramid Pooling Fusion
(SPPF) modules. For the neck, it employs Path Aggre-
gation Network (PANet) to enhance feature propagation,
paired with C2f modules, while the head consists of Conv
and C2f blocks [28], [29]. The tiny (n) version of Yolov8
is used for this implementation.

• Yolov8-RT-DETR: This modified Yolov8 has a similar
structure but replaces the head with an RT-DETR decoder,
which uses transformer-based components for more effec-
tive prediction [28].

• RT-DETR: Proposed by Zhao et al., it introduces
HGNetV2 as its backbone, a scalable backbone that
efficiently extracts multiscale features. Its neck combines

the Attention-based Intra-scale Feature Interaction (AIFI)
and CNN-based Cross-scale Feature Fusion (CCFF) to
effectively fuse features. The head uses a transformer-
based RT-DETR decoder to enhance prediction accuracy
[30]. The model used has 67% less depth and has 75%
reduced width compared to the original large version.

• Faster R-CNN: A custom Faster R-CNN model, orig-
inally proposed by Ren et al., is also tested [31]. This
version adopts MobileNetV3 as the backbone, which is
optimized for mobile devices through neural architecture
search [32]. It uses a combination of the Region Proposal
Network (RPN) and Feature Pyramid Network (FPN) as
the neck and retains the original Fast R-CNN head for
detection tasks [33].

These models were selected to provide a balanced and
representative evaluation across different detector families and
computational complexities. YOLOv8 and RT-DETR repre-
sent recently high-performing architectures widely adopted
in several object detection research, offering strong baselines
in both convolutional and transformer-based designs. The
YOLOv8n–RT-DETR hybrid was introduced to explore the
possible synergy between fast, lightweight backbones and
attention-based decoding, tailored for embedded applications.
Lastly, the Faster R-CNN with MobileNetV3 variant offers
a well-established, low-power two-stage alternative optimized
for mobile platforms.

C. Secondary Detector

This stage begins by calculating several metrics, such as
the MIP, the pixel-wise variance (VAR), and the maximum
Normalized Absolute Difference (NADmax) for a batch of
thermal images. The VAR is defined as Equation 2.

VAR = σ2(i, j) =
1

N

N∑
k=1

(Ik(i, j)− µ(i, j))
2 (2)

where µ(i, j) denotes the average intensity value at that pixel
across all frames.

Meanwhile, the NADmax is computed as Equation 3.

NADmax(i, j) = max
k=1,...,N−1

(|Ik(i, j)− Ik+1(i, j)|) (3)

where Ik and Ik+1 refer to two consecutive frames. The
maximum NAD is determined by identifying the highest pixel-
wise difference across all NAD images.

In this work, the NADmax and VAR metrics play comple-
mentary roles in capturing different aspects of thermal varia-
tions over time. NADmax is particularly effective in detecting
sudden, abrupt changes in temperature between consecutive
frames, which can indicate the onset of combustion or brief
thermal pulses. Conversely, VAR captures persistent thermal
fluctuations across a sequence of frames, which is often
characteristic of sustained combustion processes.

Secondly, as these metrics reflect the evolution of thermal
intensity over time, they are combined into a composite
image using a weighted sum. This image highlights regions
with significant thermal changes, capturing both high peak
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intensity and temporal variability. Balancing these components
is crucial for robust detection across diverse combustion
scenarios. While some fires exhibit strong infrared emissions,
making peak intensity key, others may appear weaker due to
distance, noise, or obstructions. By equally weighting temporal
variability and peak intensity, the composite image enhances
detection reliability, as defined in Equation 4.

IC = 0.5 ·

 ∑
m∈{NADmax,VAR}

wm · Im

+ 0.5 · IMIP (4)

where IC is the composite image generated. The term∑
m∈{NADmax,VAR} wm · Im represents the weighted sum of

the temporal variability metrics. Here, wm are the respective
weights for each metric Im, where m can be NADmax or VAR.
The term IMIP is the MIP image, and the factors of 0.5 indicate
that the two components of the sum are balanced equally in
contributing to the final image.

Finally, the composite image is further processed to detect
and localize areas of interest through the following steps:

• Binary Thresholding: Segments the image to isolate
high-activity regions based on their intensity.

• Region Finder: Labels contiguous regions of pixels
with similar intensities, identifying significant thermal
variations. The bounding boxes, areas, and centroids are
computed for each labeled region to localize these regions
within thermal images.

D. NMS Post-processing
The results from the core and secondary detectors are

combined using an area-based NMS algorithm, which removes
overlapping bounding boxes and consolidates the final set of
predictions. The process can be summarized as follows:

1) Compute the area of each bounding box and pool all
detections from both detectors.

2) Sort the pooled bounding boxes in descending order of
area.

3) Select the largest bounding box as the reference and
compute its overlap O with each remaining box using
Equation 5.

O =
Aoverlap

Ai +Aj −Aoverlap
(5)

where Aoverlap is the intersection area and Ai, Aj are the
individual bounding box areas.

4) Discard any box whose overlap O exceeds the prede-
fined threshold of 0.0001, thereby removing redundant
detections. Retain all boxes with O ≤ 0.0001 to preserve
distinct anomalies.

5) Repeat steps 3–4 with the next largest remaining box
until no bounding boxes remain.

This symmetric clustering and low-overlap criterion ensures
that the spatial peaks of the core detector and the high-variance
regions of the secondary detector are treated equally: any direct
overlap is merged, while separate anomalies are kept distinct.
The process directly determines the final thermal anomalies
detected, each of which is interpreted as a potential fire.

E. Identification

Detecting thermal anomalies, such as spontaneous com-
bustion, is critical when modeling long-range incipient fire
scenarios. At this stage, all candidate regions have already
been localized by the core and secondary detectors, and the
identification phase decides whether each detected anomaly is
a genuine fire or background noise. To achieve this, a novel
approach is proposed to model infrared radiation changes
over time across different groups of pixels. The total energy
captured by the camera Y is represented as a linear com-
bination of two components: the potential fire X0 and the
surrounding environment X1. Here, X1 is modeled as thermal
noise, complicating the detection of X0, as the fire occupies
a smaller area and its signal diminishes with distance. To
account for these factors, Equation 6 is used to model the
total signal Y received by the camera as a weighted average
of two thermal measurements X0 and X1.

Y = αX0 + (1− α)X1 (6)

where X0 represents the potential fire, X1 is the surrounding
thermal environment. The α parameter represents the frac-
tional contribution of X0 to the total radiometric signal. A
higher α increases detection sensitivity but may increase false
alarms, while a lower α stabilizes against noise at the cost of
missing weak fires.

In the absence of fire, X0 and X1 are assumed to be
statistically independent. This assumption can be justified for
long-range, high depth-of-field scenarios, since each pixel
represents a large area of terrain, often hundreds of meters,
so that the detected signal and its background are physically
separated by considerable distances. Given these conditions,
other background thermal anomalies, such as car engines,
sun reflections, or natural variations, are not conductively
or convectively coupled with the microenvironment of an
incipient fire, and their fluctuations occur on different spatial
and temporal scales that do not systematically align with the
fast flicker patterns of incipient combustion at X0.

Furthermore, during the early stages of ignition, when the
fire occupies very little surface area and heat transfer is still
localized, potential interactions between X0 and X1 may be
minimal. Under this assumption, the variance of the total
signal Y can be expressed as in Equation 7.

Var(Y ) = α2Var(X0) + (1− α)2Var(X1) (7)

where Var(X0) and Var(X1) are the variances of X0 and X1.
This equation defines two different stages for fire identifi-

cation:

1) Initial Phase (t ≤ t0): During the initial phase, envi-
ronmental noise dominates, masking the weak fire signal
and making detection difficult. Under these conditions,
it can be approximated that Var(Y ) ≈ Var(X1). Then,
the relationship between the sources can be expressed
as shown in Equation 8.

(2α− α2)Var(X1) ≈ α2Var(X0) (8)
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2) Detection Phase (t > t0 + t1): In this phase, the fire
signal starts to dominate over the environmental noise,
allowing confident detection. The fire identification con-
dition can be represented as shown in Equation 9 directly
from rearranging Equation 8 to isolate Var(X0).

Var(X0) >

(
2

α
− 1

)
Var(X1) (9)

Physically, this indicates the point at which the fire-
induced variance exceeds the background variance,
overcoming the slower, low-frequency drifts of non-
combustible heat sources.

In this work, each detected thermal anomaly, represented by
a bounding box, is evaluated individually to confirm whether
it corresponds to a potential fire. Equation 9 is computed
over the pixel values inside the bounding box X0 and its
surrounding background region X1 for each frame in the
LWIR image sequence. An anomaly is classified as a potential
fire source only if the fire-dominant variance condition is met
in at least half of the frames. This majority-frame rule ensures
that transient noise is rejected, but also mitigates any minor
coupling, such as slight conductive heating of background
pixels by fire, by filtering out slow, correlated drifts in X1.

The identification condition is applied using two comple-
mentary analysis strategies:

• Global Study: The entire image except the bounding
box is treated as background noise, while the pixels
inside the bounding box are considered the signal. This
is appropriate when the background is uniform or the
anomaly shows strong thermal contrast.

• Local Study: A margin is added around the bounding
box, defining a local background region. The pixels inside
the bounding box represent the signal, while the pixels
in the surrounding margin define the background noise.
This approach is particularly effective when the thermal
anomaly exhibits low contrast or gradual transitions into
the background.

The overall architecture of the proposed framework is shown
in Figure 2. Note that the two identification conditions are
applied inside the “Identification” block.

III. EXPERIMENTAL SETUP

A. Datasets

Two datasets were developed to support different aspects
of this work. The first dataset, referred to in this paper
as the Thermal Anomalies (TA) dataset, includes a diverse
range of thermal anomalies from fires, controlled burns, urban
environments, and synthetic heat sources. These scenarios
simulate potential sources of false alarms, providing robust
training data for detecting anomalies in real-world conditions.
The images came from two main sources:

1) Previous measurement campaigns conducted by this
research team, which will be made publicly available.

2) Existing state-of-the-art open datasets, such as the Ad-
vanced Driver Assistance Systems (ADAS) dataset and
the M3DF dataset [34], [35].

The general characteristics of these datasets are summarized
in Table I, which details the number of images, resolutions,
camera models, and the variety of environments represented.

TABLE I
GENERAL INFORMATION ABOUT TA DATASET

Dataset Images Resolution Camera Environment
ADAS 242 640x512 FLIR Tau 2 Urban
M3FD 65 640x512 Not specified Urban

Ours

969 640x480 FLIR A615

Urban,
Rural &

Wilderness

548 336x256 FLIR Tau 2
1046 320x256 FLIR A35
184 320x340 Seek Mosaic
351 200x150 Seek Mosaic
1014 160x120 FLIR Lepton

The collected TA dataset covers a wide range of fire
and non-fire thermal events captured in different lighting
conditions and against different backgrounds, such as urban
structures, vegetation, and bare ground, to reinforce the overall
robustness of the detector before specializing to fire scenarios.

Due to the absence of open datasets tracking incipient fires
over time from multiple perspectives, a second dataset named
Fire’s Latent Activity Monitoring and Evaluation through
Thermography (FLAME-T) was elaborated using a terrestrial
system equipped with three LWIR thermal cameras: FLIR Tau
2, FLIR A35, and FLIR Lepton. The specifications of these
cameras are summarized in Table I, while Table II provides
details on the distances of the system’s position relative to
the fire under study. Each batch comprises 20 frames captured
at 1-second intervals, for which synchronized environmental
metadata was retrieved via the Open-Meteo API at timestamps
as close as possible to the actual acquisition times [36]. This
proof-of-concept dataset is employed to evaluate the hybrid
framework developed during the measurement campaign.

TABLE II
GENERAL INFORMATION ABOUT FLAME-T DATASET

Dataset Images* System distance Fire location

FLAME-T

120 x 3 Point A: 812 m

27.990619,
-15.518103,

737

140 x 3 Point B: 1130 m
160 x 3 Point C: 1360 m
120 x 3 Point D: 440 m
140 x 3 Point E: 1160 m
200 x 3 Point F: 1050 m

* Each entry labeled “x3” indicates that images were obtained from three
different cameras.

The raw LWIR thermal sensor values were captured with-
out the camera’s post-processing modifications or automatic
scaling. This ensures a direct and consistent mapping between
pixel intensity and infrared radiation, preserving the integrity
of the measurements across frames and removing variations
introduced by dynamic camera adjustments.

Figure 3 shows a fire of the FLAME-T dataset captured with
the three cameras discussed above, highlighting the impact of
resolution (R), Horizontal Field of View (HFOV), and Vertical
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Fig. 2. Proposed framework for early fire detection and identification. Core detector (green), Secondary detector (blue), and Identification (orange).

Field of View (VFOV) on image representation. In addition, a
zoomed-in view of the heat source, enclosed in a white box,
is provided. Thermal measurements were collected from each
camera and overlaid to demonstrate the variability in the data:

• Coefficient of Variation (CV): Provides a standardized
measure of dispersion relative to the mean. It is calculated
as the ratio of the standard deviation to the mean, as
shown in Equation 10.

CV (i, j) =

√
1
N

∑N
k=1 (Ik(i, j)− µ(i, j))

2

1
N

∑N
k=1 Ik(i, j)

(10)

• Mean and Max values: Represent the average and peak
raw thermal counts captured by the cameras.

In Figure 3(a), the thermal image was captured with a Tau 2
camera, featuring a resolution of 336x256 and a very narrow
HFOV (9.3°) and VFOV (7.1°). This configuration provides
precise but highly variable readings, as reflected in a high
CV (0.71) and widely spread intensity values (mean: 6935.07,
max: 163383.0). Figure 3(b) shows an image captured with
a A35 camera, which has a similar resolution (336x256) but

a wider HFOV (24°) and VFOV (19.2°). The readings are
more stable in this case, with a low CV (0.08) and balanced
intensity values (mean: 3512.23, max: 4276.79). In contrast,
Figure 3(c) presents an image captured with a Lepton camera,
offering a lower resolution of 160x120 and the widest HFOV
(57°) and VFOV (42°). This setup prioritizes broader coverage
over detail, resulting in very stable readings characterized by
a minimal CV (0.02) and closely grouped intensity values
(mean: 3150.39, max: 3229.78).

These measurements highlight how camera specifications
and calibration influence the detection and interpretation of fire
characteristics. While proper distance calibration could enable
a general fire identification algorithm to perform consistently
across different cameras, uncalibrated setups require camera-
specific adjustments such as tailored variables or thresholds to
optimize detection accuracy, especially given that the Analog-
to-Digital Converters (ADCs) in each camera digitize the
intensity of infrared radiation in different ways.
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(a)

(b)

R = 320x256 / HFOV = 24º / VFOV = 19.2º

CV = 0.08
Mean = 3512.23
Max = 4276.79

R = 336x256 / HFOV = 9.3º / VFOV = 7.1º

(c)

R = 160X120 / HFOV = 57º / VFOV = 42º

CV = 0.02
Mean = 3150.39
Max = 3229.78

CV = 0.71
Mean = 6935.07
Max = 163383.0

Fig. 3. The same burning area captured by different LWIR thermal cameras.
(a) FLIR Tau 2 camera. (b) FLIR A35 camera. (c) FLIR Lepton camera.

B. Implementation Details

The TA dataset, shown in Table I, was split 70%-30% for
training and evaluation, resulting in 3102 and 1330 images,
respectively. To enhance generalization, pixel-level (e.g., ran-
dom blur, noise, contrast enhancement) and spatial-level (e.g.,
rotations, shifts, flips) transformations were applied to the
training data, increasing from 3102 to 9279 images.

The optimization of the proposed framework was conducted
through a two-stage grid search procedure:

• The first stage focused on configuring the parameters for
generating the composite image defined in Equation 4.
This process involved selecting suitable weights for each
component (wNAD, wVAR), along with appropriate bina-
rization thresholds. The resulting optimal values were
wNAD = 0.55 and wVAR = 0.25. For effective isolation of
significant features, the final binary mask was thresholded
at 40% of the maximum pixel value for Tau 2 images and
at 10% for both A35 and Lepton images.

• The second stage involved a separate grid search to
determine the optimal α values and margin sizes for
the identification process described in Equation 9. The
α parameter was optimized independently for both the
global study and the local study. In contrast, the margin
was only relevant and optimized for the local study, where
a region around the detected anomaly is analyzed.

Finally, the core and secondary detections are merged using
the NMS post-processing step, and the identification process
is applied. The normalized variance, calculated as the variance
of pixel values divided by their mean, is employed to analyze
and interpret the results presented.

C. Tests on Different Hardware

Modern computer vision models can be executed remotely
on external servers, but in wildfire scenarios with steep
and rugged terrain, communication failures and bandwidth
limitations are common [37]. To address these challenges,
a resource-constrained hardware platform was evaluated to
identify a methodology suitable for edge processing. Edge pro-
cessing enables the transmission of processed results instead
of raw images, conserving bandwidth and mitigating commu-
nication issues [38]. Crucially, by performing all detection and
identification locally on the edge device, the system remains
operational even when connectivity is poor or intermittent,
ensuring no loss of critical early-warning capability.

The computational efficiency of the framework was evalu-
ated on two different platforms: a high-performance training
workstation and a Raspberry Pi 5 (4GB). The object detection
models were trained in the workstation with an NVIDIA
2080Ti Graphics Processing Unit (GPU), Intel i9-9900X @
3.50GHz, and 32 GB of RAM. For the Raspberry Pi, the
models were optimized using Open Neural Network Exchange
(ONNX) to boost inference speed and efficiency for frame-
work evaluation purposes.

D. Evaluation Metrics

The detection performance is evaluated using standard
machine-learning metrics like the mAP at IoU thresholds of
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0.5 and across the 0.5–0.95 range (mAP0.5, mAP0.5:0.95),
alongside the F1 score, while the model’s ability to distinguish
fire from non-fire is quantified by classification accuracy.
However, as detection of thermal anomalies and identification
of potential fires use different criteria for true positives (TP),
false positives (FP), and false negatives (FN), these conditions
are summarized in Equation 11 and Equation 12.

Detection =


TP, if IoU ≥ Th,
FP, if IoU < Th,
FN, if missed detection,

(11)

Identification =


TP, if IoU ≥ Th ∧ Condition,
FP, if IoU < Th ∧ Condition,
FN, otherwise.

(12)

where ∧ is the AND operator, Th is the chosen threshold, and
the condition is described in Equation 9.

IV. RESULTS AND ANALYSIS

This section evaluates the proposed framework through
different experiments, each designed to assess different aspects
of its performance:

1) Benchmarking Object Detection Models: The first
experiment involves training and benchmarking different
object detection models as single-class detectors using
the validation set described in Table I. These models are
trained exclusively on the TA dataset, which includes
a diverse range of thermal anomaly scenarios beyond
wildfires. The goal of this experiment is to establish a
baseline performance reference for the models, ensuring
reproducibility and facilitating comparisons with future
research. The trained models from this stage are used in
subsequent evaluations.

2) Secondary Detector Ablation Experiment: The abla-
tion experiments were performed using the FLAME-
T dataset by varying the frame window size in the
secondary detector and testing different metric config-
urations to generate the composite image. These studies
help to evaluate the trade-offs between inference time
and detection accuracy in different configurations.

3) Framework Detection Analysis: In this experiment, the
framework is also evaluated on the FLAME-T dataset.
This approach assesses how well the models, originally
trained on a broader thermal anomaly dataset, adapt to
fire-related scenarios. Moreover, the secondary detector
is expected to reduce missed detections, thereby improv-
ing the mAP and F1 scores.

4) Framework Identification Analysis: This experiment
extends the previous one by combining the results from
both the core and secondary detectors as input for the
fire identification process. This step aims to refine fire
classification further by leveraging the strengths of both
detection mechanisms, ensuring improved robustness
and reliability in wildfire detection.

5) Comparison With State-of-the-Art Methods: The pro-
posed framework is compared with other state-of-the-art

approaches, considering key factors such as image type,
studied scenario, data source, hardware implementation,
deployment on embedded systems, and associated costs.

A. Benchmarking Object Detection Models

The results are summarized in Table III, which includes
metrics for object detection models trained on the TA dataset.
Inference times, presented in milliseconds (ms), are distin-
guished by platform: red for the training platform and blue for
the Raspberry Pi 5. The best-performing values for each metric
are highlighted in bold. In addition to the mAP0.5 and F1
score, the mAP0.5:0.95 is also reported to provide a more com-
prehensive evaluation of model performance across different
IoU thresholds. Furthermore, Giga Floating Point Operations
Per Second (GFLOPs) and the number of parameters are
included to assess complexity and computational efficiency.

For the TA validation images, it was observed that convert-
ing and optimizing the models to ONNX had no significant
impact on the overall performance. Among the evaluated
models, YOLOv8n demonstrated the best results, achieving
the highest mAP0.5 (0.692) and F1 score (0.678), along with
a higher mAP0.5:0.95 (0.320), while maintaining relatively
low GFLOPs and parameters. This suggests that YOLOv8n
offers an effective balance between accuracy and computa-
tional efficiency, making it well-suited for thermal anomaly
detection on resource-constrained platforms, and possesses
strong generalization capabilities for detecting diverse types
of thermal anomalies.

B. Secondary Detector Ablation Experiment

The results are summarized in Table IV. The term ‘Detec-
tion time’ is used since the secondary detector is not based on
a neural network model. Note that the results are highlighted
as in the previous experiment. The frame window refers to the
number of images used.

These findings indicate that increasing the frame window
size does not necessarily improve detection accuracy when
NADmax and VAR are used independently. Performance may
plateau or slightly decline beyond a certain number of frames.
However, when both metrics are combined using the weight
configurations discussed in subsection III-B, the integration of
their complementary information leads to improved detection
performance, obtaining the highest accuracy observed in a
window size of 20 frames, with a mAP0.5 of 0.700 and an
F1 score of 0.663. It is important to emphasize that this
improvement is based on empirical results with the current
dataset and cannot be generalized to larger frame windows
without additional data. The behavior of fire beyond this
observation window may vary significantly due to factors such
as wind, humidity, fuel conditions, and terrain. As such, the
transition from early fire detection to tracking fire spread
requires further investigation.

In this work, the 20-frame window was chosen for the
remainder of the experiments as a practical tradeoff between
temporal coverage and processing limitations, especially for
resource-constrained platforms such as the Raspberry Pi 5,
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TABLE III
OBJECT DETECTION PERFORMANCE FOR TA DATASET

Hardware settings
Training platform / Raspberry Pi 5

Model Inference time mAP0.5 mAP0.5:0.95 F1 score GFLOPs Parameters (M)
Yolov8n 6 / 162 0.692 0.320 0.678 7.1 ≈ 2.724

Yolov8n-RT-DETR 21 / 461 0.527 0.190 0.623 17.1 ≈ 9.643
RT-DETRn 27 / 818 0.586 0.209 0.662 38.2 ≈ 15.680

Faster R-CNN 11 / 379 0.496 0.200 0.496 4.49 ≈ 19.386

TABLE IV
ABLATION EXPERIMENT FOR THE SECONDARY DETECTOR

Hardware settings
Training platform / Raspberry Pi 5

NADmax VAR
Frame window Detection time mAP0.5 mAP0.5:95 F1 score Detection time mAP0.5 mAP0.5:95 F1 score

4 13 / 19 0.391 0.105 0.298 10 / 35 0.434 0.138 0.404
8 17 / 49 0.343 0.117 0.260 18 / 56 0.621 0.241 0.597

12 22 / 67 0.359 0.115 0.272 21 / 73 0.589 0.253 0.570
16 27 / 88 0.374 0.121 0.284 26 / 86 0.581 0.228 0.565
20 33 / 108 0.343 0.120 0.260 37 / 126 0.615 0.252 0.599

NADmax & VAR
Frame window Detection time mAP0.5 mAP0.5:95 F1 score

4 12 / 47 0.314 0.093 0.278
8 23 / 78 0.606 0.257 0.567

12 39 / 129 0.643 0.272 0.608
16 47 / 156 0.643 0.271 0.608
20 57 / 178 0.700 0.292 0.663

where computational overhead is increasingly significant. Al-
though this configuration provides the most robust detection
observed in the experiments, its feasibility in real-world edge
applications must still account for latency requirements and
hardware limitations.

C. Framework Detection Analysis

The results of the thermal anomalies detection stage are
summarized in Table V. The best-performing model is high-
lighted based on the platform: red for the training platform
and blue for the Raspberry Pi 5. The table is divided into two
parts: one for results from the core detector alone and the other
for results combining the core and secondary detectors using
the NMS algorithm.

The object detection models were initially trained and
evaluated on a dataset containing various thermal anomaly sce-
narios. In contrast, the framework evaluation conducted with
the FLAME-T dataset focused specifically on fire scenarios.
This difference in data distribution likely explains some of the
observed performance discrepancies, particularly for ONNX-
converted models. Furthermore, the evaluation approaches dif-
fered: in the first experiment, models were tested on individual
images, while in the second experiment, batches of images
were processed to generate composite images using MIP

and temporal metrics. This shift in evaluation methodology
likely influenced the performance results, as batch processing
introduces additional factors, such as aggregated temporal
features, that may affect the performance results.

The evaluation of models on the FLAME-T dataset under-
scores two key findings: the substantial accuracy improve-
ments achieved by integrating a secondary detector and the
trade-offs between accuracy and processing time across hard-
ware platforms. RT-DETRn emerged as the most accurate
model, achieving the highest mAP0.5 with 0.788 and no-
table F1 scores, such as 0.821-0.819, using only the core
detector. When combined with the secondary detector, its
mAP0.5 improved to 0.799-0.800, and F1 score surged to
0.866-0.868, reflecting its ability to focus on specific patterns
associated with fire detection, especially in datasets with
simpler decision boundaries, such as those containing only
fires. Similarly, YOLOv8n exhibited significant gains, with its
mAP0.5 increasing from 0.695-0.723 to 0.750-0.788 and its
F1 score from 0.781-0.793 to 0.826-0.840, demonstrating that
the secondary detector effectively enhances the detection of
thermal anomalies. It should be noted that the Faster R-CNN
model experienced the most substantial improvement, with
mAP0.5 rising from 0.541-0.545 to 0.735-0.744 and F1 scores
increasing from 0.604-0.619 to 0.730-0.737, highlighting the
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TABLE V
FRAMEWORK ANALYSIS FOR FLAME-T DATASET (I)

Hardware settings
Training platform / Raspberry Pi 5

Core detector Core detector + secondary detector
Model It1 mAP0.5 mAP0.5:0.95 F1 score Tdt1,2 mAP0.5 mAP0.5:0.95 F1 score

Yolov8n 7 / 187 0.695 / 0.723 0.289 / 0.298 0.781 / 0.793 57 / 360 0.750 / 0.788 0.308 / 0.347 0.826 / 0.840
Yolov8n-RT-DETR 22 / 524 0.761 / 0.749 0.262 / 0.264 0.822 / 0.813 73 / 698 0.773 / 0.769 0.290 / 0.292 0.837 / 0.835

RT-DETRn 29 / 791 0.788 / 0.788 0.308 / 0.306 0.821 / 0.819 79 / 964 0.799 / 0.800 0.308 / 0.308 0.866 / 0.868
Faster R-CNN 13 / 370 0.541 / 0.545 0.185 / 0.191 0.604 / 0.619 63 / 544 0.735 / 0.744 0.302 / 0.304 0.730 / 0.737

1 It stands for Inference time, and Tdt stands for Total detection time.
2 Tdt includes inference time from the core detector and detection time from the secondary detector using a frame window of 20 images.

effect of the secondary detector on models with initially lower
detection performance.

Furthermore, the improvements are mostly consistent with
the more stringent metric mAP0.5:0.95, highlighting the sec-
ondary detector’s ability to recover missed detections at
different IoU levels. While RT-DETRn’s mAP0.5:0.95 score
remains similar, its F1 score experiences a substantial jump,
highlighting a significant reduction in missed detections. Sim-
ilarly, mAP0.5:0.95 of YOLOv8n increases from 0.289-0.298
to 0.308-0.347, which seems to indicate that the study of
the variability between frames improves the localization of
subpixel fires that the spatial detector alone would not have
been able to detect.

However, the addition of the secondary detector also in-
troduced significant processing time increases, particularly
on resource-limited platforms like the Raspberry Pi 5. For
instance, YOLOv8n’s detection time increased from 187 ms
to 360 ms, while RT-DETRn’s detection time grew from
791 ms to 964 ms. Similarly, Faster R-CNN experienced a
processing time increase from 370 ms to 544 ms, highlighting
the computational costs of improved accuracy.

The total detection time of the framework using YOLOv8n,
including both core and secondary detectors, is approximately
half that of RT-DETRn alone while achieving comparable
mAP and an improved F1 score due to a reduction in false
negatives by implementing the secondary detector. This makes
lightweight models like YOLOv8n, when paired with an
additional detector, a more efficient and effective solution,
particularly for edge applications on embedded systems like
the Raspberry Pi 5, where computational efficiency is critical.

D. Framework Identification Analysis

The results of the framework identification stage are sum-
marized in Table VI, which presents identification time, alpha
values, and accuracy for global and local studies. These
results highlight the performance improvements obtained by
optimizing parameters for each camera. In this work, the
YOLOv8n model was chosen as the baseline core detector
to illustrate the proposed pipeline end-to-end, as it provides a
balanced trade-off between detection time, mAP, and F1 score.
Beyond its lighter architecture and favorable compute/memory
footprint, YOLOv8n also benefits from mature embedded-
system tooling, making it more practical for integration on

platforms such as the Raspberry Pi 5. Importantly, YOLOv8n
achieves competitive accuracy, including similar or even better
performance than RT-DETRn in more general metrics such as
mAP0.5:0.95.

The local study improved identification accuracy for thermal
images captured by the Lepton and A35 cameras. For the
Lepton images, where fires are represented by very few pixels
with low variance, accuracy increased from 0.162 to 0.578 on
the training platform and from 0.162 to 0.595 on the Raspberry
Pi 5. Similarly, for the A35 images, accuracy improved from
0.822 to 0.913 across both platforms, demonstrating the ad-
vantages of localized pixel analysis. Conversely, for the Tau 2,
accuracy remained stable at 0.87 across both global and local
studies. While the Tau 2 shares the same resolution as the
A35, its narrower FOV enhances thermal change detection by
focusing on a smaller region. This increases pixel-level detail
and temporal variations, making it easier for the identification
algorithm to detect fire-related anomalies with high precision.

In addition to accuracy improvements, the local study sig-
nificantly reduced identification times for processing thermal
images from all cameras. For the Lepton, identification time
decreased from 26 ms to 1 ms on the training platform and
from 73 ms to 2 ms on the Raspberry Pi 5. For the A35,
identification times dropped from 26 ms to 2 ms on the
training platform and from 73 ms to 3 ms on the Raspberry Pi
5. Even for the Tau 2, where accuracy remained unchanged,
identification time reduced from 26 ms to 7 ms on the training
platform and from 73 ms to 11 ms on the Raspberry Pi 5.
These findings emphasize that the local study improves both
accuracy and processing efficiency, particularly for thermal
images captured by cameras like the Lepton and A35, making
it a practical approach for resource-constrained environments.

The condition for correct early fire identification can be
modified depending on the scenario, as it is based on Equa-
tion 12. For illustrative purposes, Figure 4 shows different
accuracy results over different core detector confidences. In
contrast to Table VI, the accuracy values are represented as
the average of the results obtained from all cameras. The
core detector exhibits minimal accuracy for confidence levels
above 0.8 while the secondary detector remains operational.
This scenario simulates real-world conditions where the core
detector fails to detect anomalies. Yet, the secondary detector
successfully detects them, enabling the identification algorithm
to discern whether it is an incipient fire or not.
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TABLE VI
FRAMEWORK ANALYSIS FOR FLAME-T DATASET (II). OPTIMIZED α AND, WHERE APPLICABLE, MARGIN VALUES WERE DETERMINED VIA GRID

SEARCH FOR EACH CAMERA AND STUDY TYPE TO ENHANCE IDENTIFICATION ACCURACY.

Hardware settings
Training platform / Raspberry Pi 5

Global study Local study
Camera Total fires Identification time1 α Accuracy0.5 Identification time α Margin2 Accuracy0.5

FLIR Tau 2 43 26 / 73 0.2 0.87 / 0.87 7 / 11 0.15 155 0.87 / 0.87
FLIR A35 44 26 / 73 0.3 0.822 / 0.822 2 / 3 0.25 25 0.913 / 0.913

FLIR Lepton 37 26 / 73 0.6 0.162 / 0.162 1 / 2 0.45 10 0.578 / 0.595
1 Same global identification times as all images were resized to 640x640.
2 Number of pixels added around the thermal anomaly’s bounding box that defines the thermal noise.

Finally, after presenting and analyzing all the conducted
experiments, the complete workflow of the framework is
illustrated in Figure 5, providing a comprehensive overview
of the detection and identification process. This visualization
highlights the progression of thermal anomaly detection and
early fire identification in a high depth-of-field scenario.

E. Comparison With State-of-the-Art Methods

To the best of the authors’ knowledge, no publicly available
method or dataset is specifically designed for detecting early
incipient fires at long distances using only LWIR images in
high depth-of-field scenarios. As a result, direct numerical
comparisons with existing methods are not strictly valid. Most
existing approaches, such as those listed in Table VII and
Table VIII, rely on visible fire and smoke features. In contrast,
the proposed method addresses:

1) High Depth-of-Field Scenarios: Existing methods as-
sume a relatively shallow depth of field and short
distances, exploiting visible cues of fire or smoke. This
work targets long-range detection where these cues are
often imperceptible in visible and infrared imagery.

2) LWIR Imagery: Since early fire and smoke features are
not visible in the optical spectrum at large distances, this
work relies solely on raw infrared data. This introduces
additional challenges regarding resolution and scene
complexity. Unlike existing approaches that rely on 8-bit
or post-processed thermal frames, the proposed frame-
work operates directly on raw 16-bit LWIR information,
preserving full radiometric resolution for the detection
of very small, distant fires.

3) Lack of Existing Datasets: No current public dataset
exhibits these high depth-of-field, early fire characteris-
tics in LWIR; hence, this work proposes a new dataset
(FLAME-T) specifically collected for such cases. This
dataset is a novel contribution to the community, en-
abling future research in long-range early fire detection.

Due to these methodological differences, the comparison
in Table VII and Table VIII focuses on broader attributes,
including data type and resolution used, dataset used, hardware
resources, runtime performance, tested embedded deployment,
and overall cost.

The proposed framework differentiates itself from exist-
ing state-of-the-art wildfire detection methods by prioritizing

lightweight, cost-effective, and deployable solutions, address-
ing key limitations in prior works. Most existing approaches
rely on RGB-based fire detection with high-resolution images
[17], [40], [44] or processed IR data that enhance thermal
contrasts but lose vital radiometric information [14], [41], [42].
By working directly with raw LWIR images, this framework
preserves crucial thermal details, enabling the detection of
early fires, even in high depth-of-field scenarios where fire
and smoke features are not easily discernible.

Another key distinction lies in hardware requirements
and deployment feasibility. Many state-of-the-art models are
trained and deployed on high-performance GPUs, such as
Tesla A100, Tesla V100, and NVIDIA A800 [14], [40], [44],
or consumer-grade GPUs like the RTX 3070, RTX 2080 Ti,
and 1080 Ti [17], [42], [43]. While these models achieve
impressive accuracy, they are often impractical for real-world
deployment in remote or resource-constrained environments.
Some efforts mitigate this by training on high-end GPUs
while deploying on embedded platforms like Jetson Xavier
NX or AGX Xavier [20], [41], but these still present cost and
power challenges, limiting scalability. In contrast, the proposed
framework is designed for affordable, low-power deployment
using a Raspberry Pi 5, demonstrating its feasibility on a cost-
effective and energy-efficient platform, as it completes the
entire processing pipeline in less than 25 seconds, within the
estimated early fire observation window discussed in different
state-of-the-art studies [26], [27]. As a result, it becomes
possible to transmit only compact detection results, such as
bounding box coordinates, confidence scores, and location
information, thus minimizing bandwidth usage.

V. CONCLUSION

This work presents a novel framework for detecting and
identifying early-stage fires in complex environments with
significant depth of field using LWIR thermal imaging. By
integrating a dual-detection mechanism that captures both spa-
tial and temporal variations alongside a novel fire identification
strategy, the proposed framework achieves improved accuracy
and reliability in fire detection and identification.

Quantitative results validate the benefits of this approach.
On the proposed FLAME-T dataset, thermal anomaly detec-
tion performance was evaluated using both the core detector
alone and the combined core detector with the secondary
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Fig. 4. Accuracy results for different IoU. First, second, and third rows with IoU greater than 0.25, 0.5, and 0.75, respectively. First column for the global
study and second column for the local study. The boxes between the dashed vertical lines provide average accuracy data for each confidence interval.
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(a) (b) (c) (d) (e)

Fig. 5. Framework workflow for early fire detection and identification. (a) Original image (first one in the batch). (b) Composite image before binarization.
(c) Thermal anomalies detection after NMS post-processing. (d) Fire identification algorithm applied to a bounding box. (e) Final visual result.

detector. Integrating the secondary detector significantly im-
proved the overall framework performance. For instance, RT-
DETRn showed a 1.4% mAP0.5 increase and a 5.5% improve-
ment in F1 scores when the secondary detector was added.
Similarly, YOLOv8n achieved a 7.9% mAP0.5 increase and
a 5.8% improvement in F1 scores by incorporating the sec-
ondary detector. Notably, Faster R-CNN exhibited the highest
relative improvement, with a 35.9% increase in mAP0.5 and
a 20.9% boost in F1 scores, demonstrating how the secondary
detector effectively mitigates the model’s initial limitations.
While the framework demonstrated significant improvements
in detection performance, these gains came with increased
processing times on the Raspberry Pi 5. This highlights the
trade-off between accuracy and efficiency in deploying the
framework for edge applications.

The inclusion of both global and local studies provided
valuable insights into the adaptability of the identification

algorithm across various thermal cameras. The local study,
in particular, proved effective in optimizing classification ac-
curacy and efficiency, especially for thermal cameras like the
Lepton and A35, making this identification algorithm practical
for edge deployments in diverse and challenging environments.

The complete processing of 20 frames, including image ac-
quisition, detection, and identification, takes less than 25 sec-
onds on the Raspberry Pi 5, falling within the estimated early-
fire observation window of approximately 5–120 seconds,
allowing key detection information to be transmitted while
reducing bandwidth usage, as the processing is performed on-
edge. It should be noted that in applications covering large
areas, such as scenarios requiring multiple perspectives or the
use of wide-angle cameras, processing times may vary due to
an increased number of pixels per frame and expanded FOV. In
such cases, computational requirements may rise, particularly
when handling higher-resolution thermal data. Nevertheless,
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TABLE VII
COMPARATIVE TABLE WITH OTHER STATE-OF-THE-ART APPROACHES FOR WILDFIRE DETECTION (I): RESOLUTION (R), SOURCE (S)

Method Data Type Dataset Scenery Type

GMM-EM [39]
Video (RGB)

R: 320×240 to 1600×1200
VisiFire, FireSense

S: Wildfires, Smoke, Candles, etc.
Ground

Short Distances

Miti-DETR [40]
Images (RGB)
R: Unknown FLAME

S: Controlled Fire, Smoke

UAV
Zenithal Perspective

Shallow Depth of Field

Inv-Net [17]
Images (RGB)
R: 3840×2160

AMSO-SFS [41]
Images (RGB + Processed LWIR + SAR)

R: 512×512 FLAME, FLAME2
S: Controlled Fire, SmokeCT-Fire & DC-Fire [42]

Images (RGB + Processed LWIR)
R: 224×224

Encoder-Decoder [14]
Video (RGB + Processed LWIR)

R: Unknown
FLAME2

S: Controlled Fire, Smoke

FFS-Unet [43]
Images (RGB)
R: 448×448

FLAME, ERA, Corsican Fire
S: Controlled Fire, Wildfire, Smoke

Ground, UAV
Zenithal Perspective

Shallow Depth of Field

RFWNet [20]
Images (RGB)
R: 448×448
and 832×832

DFS-FIRE, Proprietary, Synthetic
S: Wildfire, Smoke, etc.

Ground, UAV
Mixed Perspectives

Custom YOLOv8 [44]
Images (RGB)
R: Unknown

D-Fire, Proprietary
S: Wildfire, Large Smoke Plumes

UAV
Mixed Perspectives

Ours Images (Raw LWIR)
R: 640×640

FLAME-T
S: Very small burning area

Ground
High Depth of Field
Different Positions

TABLE VIII
COMPARATIVE TABLE WITH OTHER STATE-OF-THE-ART APPROACHES FOR WILDFIRE DETECTION (II)

Method Hardware Runtime1 Deployment 2 Cost3

GMM-EM [39] Intel Core i3 (inference) ≈ 48 ms Yes Low
Miti-DETR [40] Tesla V100 (train + inference) ≈ 9.8 ms No High

Inv-Net [17] GTX 3070 (train + inference) ≈ 640 ms No High

AMSO-SFS [41] RTX 3090 (train)
Jetson AGX Xavier (inference) ≈ 54 ms (Jetson) Yes Medium

CT-Fire & DC-Fire [42] RTX 2080 Ti (train + inference) DC-Fire: ≈ 13 ms
CT-Fire: ≈ 24 ms No High

Encoder-Decoder [14] Tesla A100 (train + inference) Unknown No High
FFS-Unet [43] GTX 1080Ti (train + inference) ≈ 20 ms No High

RFWNet [20] NVIDIA RTX 4080 (train + inference)
Jetson Xavier NX (inference)

≈ 3.26 ms (Desktop)
≈ 50 ms (Jetson) Yes Medium

Custom YOLOv8 [44] NVIDIA A800 (train + inference) ≈ 15.5 ms No High

Ours NVIDIA RTX 2080 Ti (train + inference)
Raspberry Pi 5 (inference)

≈ 60 ms (Desktop)
≈ 400 ms (Raspberry) Yes Low

1 Inference time per frame, estimated by 1000 / FPS.
2 Whether the proposed approach has been implemented in an embedded system.
3 Monetary cost in case of practical implementation. NVIDIA graphics cards are assumed to be part of a possible server.

the framework is scalable and can be adapted by balancing
resolution, coverage, and processing resources to maintain
accuracy within this temporal margin.

Overall, the proposed method fills a crucial gap in the state
of the art by providing a practical approach for deployment
in resource-constrained environments. Unlike previous work
that relies on high-power GPUs or fire and smoke analysis
based on processed RGB or IR images, this method effectively

leverages raw LWIR images, a lightweight detection process,
and the feasibility of integrated deployment, making it suitable
for early wildfire detection in challenging environments.

Future research should focus on improving accuracy and
overcoming some limitations by integrating portable weather
stations for real-time recording of environmental factors, such
as atmospheric distortions, ambient temperature, relative hu-
midity, wind speed, and various background conditions, to
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enhance robustness in different early fire detection scenarios.
Additionally, optimizing the framework for edge applications
and exploring its scalability for large-area monitoring will
be crucial to extending its applicability in real-world wildfire
detection and prevention systems.
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