Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154910
Campo DC Valoridioma
dc.contributor.authorBatista-Miranda, Jose Emilioen_US
dc.contributor.authorQuinteiro González, José Maríaen_US
dc.contributor.authorMonzon-Falconi, Juan Franciscoen_US
dc.contributor.authorLopez de Mesa, Melanie Tatianaen_US
dc.contributor.authorBassas-Parga, Anaisen_US
dc.contributor.authorHernández Acosta, Luis Miguelen_US
dc.contributor.authorQuinteiro Donaghy, Danielen_US
dc.date.accessioned2026-01-13T07:59:45Z-
dc.date.available2026-01-13T07:59:45Z-
dc.date.issued2025en_US
dc.identifier.issn0724-4983en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/154910-
dc.description.abstractAimUrodynamic studies are essential for diagnosing lower urinary tract dysfunction but are expert-dependent and time-consuming. Artificial intelligence (AI), notably machine learning (ML) and deep learning (DL) may help automate and standardize interpretation, reducing inter-observer variability and improving efficiency.Objective To evaluate the correlation between artificial intelligence (AI) based classification and human expert diagnosis of detrusor overactivity (DO) in cystometry (CMG), with explicit handling of artifacts and quantification of parameters.Study design Retrospective, single-center, observational diagnostic-accuracy (cross-sectional) study with a consecutive cohort of adults who underwent cystometry in 2023, in which AI outputs were compared with a reference standard (three-urologist consensus). We evaluated 517 cystometry (CMG) tracings: 200 used to train AI models and 317 reserved for testing. Two approaches were assessed: (i) image-based CNN-VGG16 deep learning, which achieved 75% accuracy for detecting detrusor overactivity (DO) but did not yield quantitative metrics and (ii) wavelet-based ML (Daubechies transforms), which improved accuracy to 84.2%, with 82.6% specificity and 86.3% sensitivity, while providing detailed contraction descriptors. An Isolation Forest anomaly-detection stage identified and managed artifacts (e.g., coughs, open lines, catheter movement). Integrating signal processing (time-frequency denoising and rule-based thresholds) with AI classification supported robust CMG event recognition, enabling clearer identification of DO, estimation of bladder compliance from DO-free segments, and mitigation of artifacts. Both branches produced classifications in less than 20 s per study.ConclusionCombining algorithmic outputs with expert supervision could deliver practical, faster, and more reproducible urodynamic reporting, while preserving clinical accountability and transparency and generalizability.en_US
dc.languageengen_US
dc.relation.ispartofWorld Journal of Urologyen_US
dc.sourceWorld Journal Of Urology[ISSN 0724-4983],v. 44 (1), (Diciembre 2025)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherUrodynamicen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherOveractive Detrusoren_US
dc.titleArtificial inteligence reading of cystometric traces provides good correlation with human diagnosisen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00345-025-06097-zen_US
dc.identifier.isi001631723400011-
dc.identifier.eissn1433-8726-
dc.identifier.issue1-
dc.relation.volume44en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages9en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Batista-Miranda, JE-
dc.contributor.wosstandardWOS:Gonzalez, JMQ-
dc.contributor.wosstandardWOS:Monzon-Falconi, JF-
dc.contributor.wosstandardWOS:de Mesa, MTL-
dc.contributor.wosstandardWOS:Bassas-Parga, A-
dc.contributor.wosstandardWOS:Acosta, LMH-
dc.contributor.wosstandardWOS:Donaghy, DQ-
dc.date.coverdateDiciembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,975
dc.description.jcr2,8
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Sistemas de Información y Comunicaciones-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptGIR IUMA: Sistemas de Información y Comunicaciones-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.orcid0000-0002-6525-1316-
crisitem.author.orcid0009-0001-4026-388X-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameQuinteiro González, José María-
crisitem.author.fullNameHernández Acosta, Luis Miguel-
crisitem.author.fullNameQuinteiro Donaghy, Daniel-
Colección:Artículos
Adobe PDF (1,26 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.