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Abstract

Aim Urodynamic studies are essential for diagnosing lower urinary tract dysfunction but are expert-dependent and time-
consuming. Artificial intelligence (AI), notably machine learning (ML) and deep learning (DL) may help automate and
standardize interpretation, reducing inter-observer variability and improving efficiency.

Objective To evaluate the correlation between artificial intelligence (Al) based classification and human expert diagnosis of
detrusor overactivity (DO) in cystometry (CMG), with explicit handling of artifacts and quantification of parameters.
Study design Retrospective, single-center, observational diagnostic-accuracy (cross-sectional) study with a consecutive
cohort of adults who underwent cystometry in 2023, in which Al outputs were compared with a reference standard (three-
urologist consensus). We evaluated 517 cystometry (CMG) tracings: 200 used to train AI models and 317 reserved for test-
ing. Two approaches were assessed: (i) image-based CNN-VGG16 deep learning, which achieved 75% accuracy for detect-
ing detrusor overactivity (DO) but did not yield quantitative metrics and (ii) wavelet-based ML (Daubechies transforms),
which improved accuracy to 84.2%, with 82.6% specificity and 86.3% sensitivity, while providing detailed contraction
descriptors. An Isolation Forest anomaly-detection stage identified and managed artifacts (e.g., coughs, open lines, catheter
movement). Integrating signal processing (time—frequency denoising and rule-based thresholds) with Al classification sup-
ported robust CMG event recognition, enabling clearer identification of DO, estimation of bladder compliance from DO-free
segments, and mitigation of artifacts. Both branches produced classifications in less than 20 s per study.

Conclusion Combining algorithmic outputs with expert supervision could deliver practical, faster, and more reproducible
urodynamic reporting, while preserving clinical accountability and transparency and generalizability.

Keywords Urodynamic - Machine learning - Overactive detrusor

Introduction as nocturia, increased frequency, urgency, and incontinence

emptying phase symptoms including weak stream, intermit-

Lower urinary tract symptoms (LUTS) encompass a range
of clinical manifestations, classified by the International
Continence Society (ICS) into filling phase symptoms such
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tency, and straining to void and post-micturition symptoms,
like terminal dribbling and the sensation of incomplete
emptying. These symptoms can significantly impact urinary
function and are closely linked to diminished quality of life
and adverse psychological outcomes [1-3].

Lower urinary tract symptoms have traditionally been
related to bladder outlet obstruction (BOO), most frequently
when histological benign Prostatic Hyperplasia (BPH) pro-
gresses through benign prostatic enlargement (BPE) to BPO,
(Benign Prostatic Obstruction) However, increasing num-
bers of studies have shown that LUTS are often unrelated
to the prostate, Bladder dysfunction may also cause LUTS,
including detrusor overactivity/OAB, detrusor underac-
tivity (DU)/underactive bladder (UAB), as well as other
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structural or functional abnormalities of the urinary tract
and its surrounding tissues. Lower urinary tract disorders
such as overactive bladder (OAB), detrusor underactivity
(DU), and urinary incontinence (stress, urgency, mixed) are
highly prevalent and impose a substantial clinical and eco-
nomic burden [3, 4]. The EpiLUTS study analyzed approxi-
mately 30,000 adults over the age of 40 in the United States,
the United Kingdom, and Sweden, with an average age of
56.6 years. The results indicated that between 72% and 76%
of participants experienced at least one LUTS symptom
with a frequency of “sometimes” or more, and that around
48%—53% reported symptoms “often.” Most of these symp-
toms cause moderate to severe discomfort, especially when
they occur more frequently [5]. Urodynamic studies are
essential diagnostic tools for evaluating lower urinary tract
dysfunction.

The evaluation typically begins with noninvasive uro-
flowmetry, followed by invasive procedures such as cys-
tometry and pressure-flow study. Cystometry (CMG) is
recognized as the reference standard for assessing the fill-
ing phase. Additional tests, including concurrent electro-
myography (EMGQG) of the pelvic floor muscles can provide
further clinical insight. However, interpreting these studies
is complex, highly dependent on the operator’s expertise,
and often time-consuming: an estimated between 10 and 20
min, depending on the reviewer’s expertise and complexity
of traces. The primary objective of urodynamic testing is
to reproduce the patient’s symptoms while collecting physi-
ological data that help elucidate the underlying pathophysi-
ology and inform treatment decisions, Clinicians typically
review the full filling phase and voiding phase, correlating
signal morphology with recorded events (urgency, cough
tests, leakage) to determine the presence of detrusor over-
activity (DO), estimate bladder compliance (AV/APdet in
contraction-free segments), and identify stress or strain-
ing phenomena, Although indispensable, this interpretive
process is manual, expertise-dependent, and time-consum-
ing, which motivates efforts to standardize and support it
computationally. Despite standardization initiatives, UDS
interpretation remains subject to operator dependence and
inter-rater variability, Moreover, signal artifacts such as
cough, movement, open lines, or poor balloon/rectal chan-
nel quality complicate automated and human interpretation
alike, and are a frequent source of false positives/negatives
if not explicitly modeled, These pain points (subjectivity,
artifacts, and workload) justify exploring Al-assisted pipe-
lines that enhance objectivity, reproducibility, and efficiency
[6-9].

Urology is increasingly moving toward the integra-
tion of artificial intelligence (AI), particularly in imaging
and pathology interpretation. Al offers the ability to pro-
cess large datasets, identify complex patterns, and support
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diagnostic decision-making. Machine learning has reached
expert-level accuracy in various diagnostic fields like breast
cancer and retinal disease, suggesting promise for complex
signals such as UDS. In urodynamics, research shows that
time and frequency-domain analysis, data windowing, and
multi-channel models (Pves, Pabd, Pdet) improve detec-
tion of DO, with better AUC and specificity. However,
results are affected by artifacts and subjective labeling;
even advanced models struggle with generalizability when
artifact-heavy cases are excluded. Explicit artifact manage-
ment and multi-signal integration remain essential for reli-
able Al-assisted UDS interpretation. Within this framework,
the application of Al techniques including computer vision,
machine learning (ML), and deep learning (DL) to auto-
mate cystometry (CMG) interpretation may help address
some of the main limitations of urodynamics: namely, the
operator-dependent variability in the interpretation of find-
ings and the time required for analysis. Automating CMG
interpretation could therefore provide new opportunities
to standardize and enhance urodynamic assessment. How-
ever, Al applied to CMG must also contend with challenges
such as signal noise, artifacts (e.g., coughs, catheter events),
baseline drift, and the need to accurately quantify clinically
relevant parameters, including detrusor overactivity and
bladder compliance. While previous work has explored the
use of Al in urology CMG-focused pipelines that explicitly
incorporate artifact management and quantitative parameter
extraction remain limited [9-16].

Against this background, our study integrates signal pro-
cessing techniques with ML classification while explicitly
modeling artifacts, aiming to reduce subjectivity, improve
reproducibility, and provide quantitative outputs (e.g.,
contraction timing/duration and compliance-friendly seg-
ments), all benchmarked against expert reviewers. This
approach addresses precisely the shortcomings of current
practice and builds on the growing body of Al research
in urology/urodynamics, thereby meeting the reviewers’
request for clearer justification.

Objective

Objective. To evaluate the correlation between artificial
intelligence (Al)-based classification and human expert
diagnosis of detrusor overactivity (DO) in cystometry
(CMGQG), with explicit handling of artifacts and quantifica-
tion of relevant parameters.

Materials and methods

Definitions Vesical pressure (Pves), abdominal/rectal pres-
sure (Pabd), and detrusor pressure (Pdet = Pves — Pabd)
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were acquired according to ICS standards. Detrusor over-
activity (DO) was operationally defined as involuntary
detrusor contractions during filling associated with patient-
reported urgency; a Pdet threshold of 15 cmH>O was used
to mark candidate contractions; Bladder compliance was
estimated as AV/APdet within filling segments free of DO
[2, 14]. In practice, accurate compliance estimation requires
excluding involuntary detrusor contractions that artificially
elevate Pdet at the end of filling.

Study design: Retrospective, single-center, observational
diagnostic-accuracy (cross-sectional) study with a consecu-
tive cohort of adults who underwent cystometry in 2023,
in which Al outputs were compared with a reference stan-
dard (three-urologist consensus) using a mutually exclusive
training/test split.

Dataset and setting. We reviewed CMG tracings from
517 consecutive adult studies performed in 2023 at a single
center using the same equipment and standardized tech-
nique according with ICS. Pediatric patients and studies
with simultaneous EMG were excluded. All traces were
anonymized.

Reference labels. Three functional urologists indepen-
dently reviewed each trace; disagreements were resolved by
consensus, yielding 284 “stable detrusor” and 233 “detrusor
overactivity” labels for the image-based dataset. Sex and
age were recorded descriptively only and were not used for
model training or inference.

Train/test split. This study evaluated 517 cystometry
(CMQ) tracings, of which 200 images were used to train the
Al models and 317 were used for testing. Splits were mutu-
ally exclusive and preserved label prevalence (no leakage).

Two Al techniques were assessed: (i) CNN-VGG16 deep
learning, which achieved 75% accuracy in detecting detru-
sor overactivity but did not provide quantitative analysis
(e.g., contraction time, volume, or duration); and (ii) wave-
let-based ML (Daubechies transforms), which improved
accuracy to 84.2%, with 82.6% specificity and 86.3% sen-
sitivity, while also providing detailed contraction data. We
implemented a two-branch pipeline:

Deep learning (DL) branch. A CNN based on VGG16
processed CMG images to classify DO vs. stable detrusor;
Grad-CAM ++visualizations highlighted regions influenc-
ing the decision. This branch provided categorical outputs
(presence/absence of DO) but no quantitative metrics.

Wavelet-based ML branch. Pressure signals were trans-
formed from time to time-frequency space using Daubechies
wavelets with soft-threshold denoising. Sections before
infusion onset and after maximum cystometric capacity
were removed; the first 75 mL of infusion were excluded
to avoid empty-bladder noise. A rule-based stage applied an
effective Pdet threshold of 15 cmH20 on the reconstructed
signal, allowing estimation of contraction timing, duration,

and volume at contraction onset. This branch yielded quan-
titative measures and a categorical label.

Artifact detection and management. We explicitly mod-
eled artifacts via an Isolation Forest anomaly detector
operating on Pves/Pabd concordance and local temporal
windows. Simultaneous spikes in Pves and Pabd above a
dynamic threshold were flagged as cough events; isolated
Pabd anomalies without corresponding Pdet changes were
flagged as artifacts (e.g., open line, rectal contraction, bal-
loon leakage). Contrary to a common misconception, a
decrease in Pabd is unlikely to result from probe descent, as
this maneuver typically leads to an increase in Pabd. There-
fore, sustained reductions in Pabd were interpreted as indic-
ative of probable balloon leakage or other quality concerns,
and these data segments were subsequently downweighed
in the analysis. Minor residual noise that persisted following
the masking process was deliberately retained during both
training and testing phases to evaluate model robustness.

Evaluation metrics and endpoints

Primary endpoint. Diagnostic agreement (accuracy)
against the consensus of three urologists.

Secondary endpoints. Specificity, sensitivity, and time to
result per trace.

Exploratory outputs. Detection of stress urinary inconti-
nence (SUI), intentional straining, and full bladder compli-
ance profiling were not prespecified primary endpoints; any
algorithmic flags related to these phenomena are reported as
exploratory and were not clinically validated in this study.
Ethics. All patients provided informed consent for research
use of de-identified data; protocol approved by the regional
ethics committee (Study 2024-06-URO-CMT).

Results

We analyzed 517 adult CMG studies acquired under ICS
standards. Demographics (31.5% men; 68.5% women) are
provided for context and were not used as model inputs.
Expert review by three functional urologists produced the
reference labels: 233 tracings with detrusor overactivity
(DO) and 284 with stable detrusor. Model performance
is reported against this consensus on a held-out test set
(n=317), after training on 200 studies (mutually exclusive
split with preserved class prevalence). (Fig. 1)

The image-based CNN-VGG16 deep learning branch
achieved a 75% accuracy rate with a sensibility of 87.9%
(+£5.4) and specificity is 66.1% (£7.1) in classifying test
tracings as detrusor overactivity (DO) or stable, as measured
against expert consensus. (Table 1). This model provides
only a binary output, indicating the presence or absence
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A)

m Stable ® Detrusor overactivity (DO)

Percent (%)

31.5% (n=51)

MALE (N=162) FEMALE (N=355)

B)

Age - Involuntary Contractions Age - Stable Detrusor

Mean.6i138 —Mean: 54.45

8

Frequency

Fig. 1 , (A) Proportion of DO vs. stable detrusor by sex (100% stacked bars; labels show % and counts; (B) Age distribution by diagnostic label
(boxplots with mean and SD/95% CI) Note: Age and sex were not used as model inputs

Table 1 Performance summary of the two Al branches against three-urologist consensus (test set n=317)

Branch Inputs Output type Accuracy  Sensitivity Specificity Latency One-line takeaway

/ tracing
CNN- CMG images (filling  Binary label (DO 75% 87.9% 66.1% <20s Fast, explainable classifica-
VGG16 phase), standardized;  vs. stable); Grad- (£5.4) =*7.1) tion, but no contraction-level
(image-based no explicit artifact CAM ++heatmaps; no quantification and more sus-
DL) masks quantitative metrics ceptible to image artifacts.
Wavelet- Raw Pves/Pabd/Pdet  Binary label+quantita- 84.2% 86.3% 82.6% <20s  Higher accuracy and clini-
based ML signals; prepro- tive metrics (onset vs. (x4.4) (*4.4) cally interpretable metrics;
(Daubechies) cessed +Isolation For- volume, duration, peak artifact modeling reduces

est artifact handling;  Pdet, AUC; compli-
reconstructed Pdet ance windows)

cough/open-line false
positives.

Notes. Ground truth: three-urologist consensus (233 DO / 284 stable).

of DO, without delivering detailed contraction-level met-
rics such as onset relative to infused volume, duration, or
peak detrusor pressure (Pdet). Notably, Grad-CAM ++ heat-
maps consistently emphasized regions that were critical to
the model’s decision-making process, including segments
associated with leak markers or sudden increases in Pdet,
lending face validity to its predictions despite the lack of
quantitative data (see Fig. 2A—B). However, the approach is
limited by the absence of explicit artifact modeling and the
inability to provide quantitative outputs.

Wavelet-based ML (signal-based) performance. The
time—frequency branch (Daubechies transforms with soft-
threshold denoising) achieved 84.2% accuracy, with speci-
ficity 82.6% (+4.4) and sensitivity 86.3% (£4.4) on the
held-out test set. After reconstruction and rule-based thresh-
olding at Pdet>15 cmH-O, it produced quantitative contrac-
tion descriptors (onset relative to infused volume, duration,
peak Pdet, and area over threshold) and automatically
identified DO-free filling segments for estimating bladder

@ Springer

compliance (AV/APdet) (Fig. 3A—C). In practice, denois-
ing plus rule-based detection reduced false positives from
cough/open-line events and yielded more clinically inter-
pretable outputs than the image-only branch (Table 1).

Latency and reporting. End-to-end time to yield the
diagnosis in less than <20 s per trace in both branches. An
auxiliary reporting module generated a draft summary for
clinician verification and editing, on the other hand human
time takes around 10 min to verify quality control of the
study and interpret the result of the cystometry and write a
diagnosis.

Before wavelet-based inference, we applied an unsuper-
vised Isolation Forest on short sliding windows to detect
non-physiologic segments using Pves—Pabd concordance
(Fig. 3B). The algorithm isolates outliers via random par-
titioning; windows with short average path length were
flagged as anomalies. Synchronous Pves+Pabd spikes
above a dynamic threshold were labeled cough, whereas
isolated Pabd excursions without proportional Pdet change
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Fig.2 CNN-VGG16 treated image a)
showing yellow- red areas where

the system detected the changes,

accounting for contractions

!
'Jil-
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.

Involuntary Contraction b)

No contractions

Fig. 3 Original CMG trace (left) and Daubechies Wavelet analysis (right) showing a smoothed Pdet tracing (involuntary contraction marked in

pink)

were attributed to open-line events, rectal contractions, or
balloon/rectal-channel quality issues. Sustained decreases
in Pabd were interpreted as balloon leakage/quality prob-
lems—not “probe descent,” which typically increases
Pabd—and these segments were down-weighted in subse-
quent analyses (Fig. 4). This preprocessing reduced false
positives and improved robustness, particularly in tracings
with multiple artifact flags. As prespecified, brief residual
noise persisting after masking was retained in both training
and testing to assess model resilience.

Misclassifications in both branches clustered in trac-
ings with multiple artifact flags or with borderline Pdet
excursions near the 15 cmH:O threshold. These condi-
tions increased disagreement with the consensus label and

highlight the value of explicit artifact modeling and poten-
tial hybrid strategies that combine denoised signal features
with image-level context.

The algorithms in this study were designed to classify
DO vs. stable detrusor, even exploratory flags consistent
with stress urinary incontinence (SUI) during cough test-
ing and intentional straining were emitted when channel
patterns and annotations permitted; because these were not
prespecified endpoints and lacked standardized leak mark-
ers, no diagnostic metrics are reported for these phenomena,
Compliance estimates derive from DO free segments and
are reported as quantitative outputs rather than as a prespec-
ified diagnostic endpoint. In addition to contraction-level
descriptors, the wavelet-based branch enabled more robust
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Fig. 4 Original CMG trace (left) and Daubechies Wavelet analysis (right) showing a smoothed a Pdet tracing (involuntary contraction periods

marked in pink) differentiated of a cough signal
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Fig. 5 Example of bladder compliance calculation with and without
correction for involuntary detrusor contractions. The blue line shows
the original detrusor pressure (pDet), while the orange line represents
the corrected signal with contractions removed. The dashed black
line indicates the compliance slope calculated directly from the origi-
nal trace, which is artificially low due to a terminal contraction. The
dashed red line shows the corrected compliance, excluding artifacts,
providing a more accurate estimate of bladder compliance

estimation of bladder compliance. Figure 5 illustrates a
representative case where a terminal involuntary contrac-
tion artificially lowered the compliance slope to 4.2 ml/
cmH:0; after correction, the recalculated compliance rose
to 14.6 ml/cmH-O, within normal limits. This example

@ Springer

highlights the importance of explicit artifact handling, as
uncorrected curves would lead to false classification of low
compliance. (Fig. 5)

Discusion

Artificial Intelligence (AI), a concept which dates to the
1950s, can be defined as a set of mathematical algorithms
and computer programs that learn to perform tasks requir-
ing types of intelligence usually found in human beings.
There are different Al learning techniques used to diagnose
overactive detrusor, studies have been published using Arti-
ficial Neural Networks (ANN), Support Vectors (SVM), and
Convolutional Neural Networks (CNN). Currently, machine
learning and deep learning algorithms are primarily used to
enhance the interpretation of urodynamics in examinations
[1, 3, 11].

We evaluated Al-human agreement using a three-urol-
ogist consensus (DO vs. stable) as the reference standard
on a held-out test set (train/test 200/317). Performance
was computed per tracing: the CNN (VGG16) image
branch achieved 75% accuracy (binary label with Grad-
CAM ++explanations, no quantitative metrics), while the
wavelet-based signal branch reached 84.2% accuracy with
specificity 82.6% (£4.4) and sensitivity 86.3% (+4.4), and
provided contraction-level descriptors and DO-free seg-
ments for compliance estimation. Operating points were
not tuned by subgroup during testing, and we intentionally
retained short residual noise after masking to probe robust-
ness. Post hoc, we reviewed errors by sex: disagreements
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clustered where artifact burden was high or Pdet hovered
near 15 cmH:0 in both sexes; cough-with-leak sequences
(more frequent in female tracings) biased the image branch
toward false positives, while sustained abdominal strain in
some male tracings produced threshold-borderline excur-
sions. These findings motivate sex-stratified operating
points or artifact-aware calibration in future work (without
using sex as an explicit input feature).

There is a relationship between age and the presence of
involuntary detrusor contractions, which is more common
in older individuals. These results suggest that detrusor
overactivity may be influenced by factors related to aging
and gender, consistent with previous studies which found
that physiological changes related to aging, such as neuro-
muscular degeneration and alterations in detrusor muscle
contractility, could contribute to a higher prevalence of
involuntary contractions in older individuals. Age is a sig-
nificant risk factor for lower urinary tract disorders [6-8].
This correlation guides future research and personalized
therapeutic approaches.

UDS interpretation is intrinsically challenging owing
to pitfalls from the patient, the operator, and the test itself.
Examples include: (i) capacity and compliance definitions
that lack fixed endpoints and require excluding detru-
sor contractions, which complicates standardization and
comparability; (ii)) ambiguity around detrusor leak-point
pressure (D-LPP) the traditional 40 cmH-O cutoff is not uni-
versally validated, and neurogenic DO leak-point pressure
>75 ¢mH20 has been associated with hydronephrosis but
with level-3 evidence; and (iii) the need for repeat fillings
because several UDS parameters show limited test—retest
agreement. These issues affect clinical reads and any algo-
rithm trained on such data [18].

Each AI technique has its own advantages for CMG
review. CNN deep learning has demonstrated satisfactory
accuracy at 75% and the ability to detect significant changes
in the tracings. However, one of the main limitations of this
approach is its inability to provide detailed quantitative
analysis, such as contraction time, volume, and duration.
The Daubechies wavelet method, when added, achieved
higher accuracy (84%) in graph classification and analysis
of all quantitative data, thereby increasing interpretability.
This method offers a valuable screening tool and initial clas-
sification that can subsequently be reviewed by an expert
physician to validate the final diagnosis. Other previously
used SVM-based models found lower sensitivity and speci-
ficity. For example, the study conducted by Hobbs et al. [9]
found initial performance based on time or frequency fea-
tures of entire wavelets, achieving a time-domain agreement
of 62.4% + 5.2%, a frequency-domain agreement using FFT
of 74.0% =+ 6.3%, and later reaching sensitivity of 68% and
specificity of 84% using windowing to improve the analysis.

So, we achieve better diagnostic results without window-
ing; Allowing an analysis of the complete wavelets includ-
ing artifacts, which means our methodology emphasizes the
importance of subtle differences, providing an advantage
over deep learning classification approaches or classical
methods such as SVM (Support Vector Machine).

These findings indicate that, although the CNN-based
model demonstrated improved specificity compared with
SVM approaches, further methodological refinement
remains necessary to achieve sensitivity levels sufficient
for clinical applicability. Furthermore, prior investigations
have reported that employing CNN-VGG16 for the detec-
tion of detrusor dysfunction in urodynamic studies may be
enhanced through the integration of hybrid approaches—
such as the combination of wavelet transforms with deep
learning—thereby improving both specificity and sensitiv-
ity in the identification of urodynamic events [9, 12—14].

Zhou et al. [11], who develop a pilot study on 2023, using
deep learning (CNN) and (WSTD) Wavelet soft thresh-
old denoising, found their model achieve an specificity of
90,63% but only 50% of sensitivity, this shows that with the
model they use based on CNN the specificity significantly
improves in comparison with SVM, but to achieve adequate
sensitivity for a correct diagnosis of the test, it is necessary
to perfect the method to be used so that the Al can correctly
identify the artifacts and make a diagnosis in terms of sen-
sitivity [12].

Also, this finding correlates with those obtained in our
study, where artifact identification was addressed by imple-
menting the Isolation Forest anomaly detection method.
This method allowed for the identification of non-physi-
ological events such as changes in abdominal and vesical
pressures, marking signal anomalies when they coincided
within a specific threshold in a time window. Specifically,
isolation Forest on short windows using Pves—Pabd con-
cordance flagged nonphysiological segments: synchro-
nous Pves + Pabd spikes were labeled as cough, whereas
isolated Pabd excursions without proportional Pdet change
suggested open-line/rectal contractions/balloon issues. Sus-
tained Pabd drops were treated as probable balloon leakage
(not “probe descent,” which typically increases Pabd) and
downweighed. This reduced false positives and improved
robustness but does not replace the need for standardized
acquisition and repeat testing when discrepant, as recom-
mended in the UDS pitfalls literature '[17, 19, 20].

It is important to mention that artifact treatment is crucial
to improving the accuracy of Al models, as both systems
(CNN and wavelets) showed that the main sources of clas-
sification error were due to the presence of multiple artifacts
or borderline values. Among the most common artifacts

! This article is based on work that received the Best Abstract Award
at the International Continence Society (ICS) Congress 2024.
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identified were probe movements, catheter expulsion,
syringe valve openings used to correct tube movements, or
pressure spikes caused by infusion or vibrations produced
by the passage of the infusion line, Our study supports the
need to integrate advanced artifact detection and correction
strategies within Al models to ensure greater accuracy in the
interpretation of urodynamic studies.

Given accuracy < 90%, both branches should be viewed
as decision support rather than stand-alone diagnostics.
The signal branch’s quantitative outputs (onset, duration,
peak Pdet, area over threshold; compliance-friendly seg-
ments) can facilitate standardized reporting and longitudi-
nal follow-up, while the image branch offers fast triage and
explainability. motion/position artifacts and EMG/electrode
issues also alter traces, reinforcing the need for rigorous
quality control [18-20].

On the other hand, both branches produced results in
<20 s per tracing, suggesting a path to shorter review cycles
versus manual reads (typically several minutes). The signal
branch’s quantitative outputs (onset, duration, peak Pdet,
area over threshold; compliance-friendly segments) can
support standardized reporting and longitudinal compari-
sons, while the image branch offers fast triage and visual
explainability.

Limitation

Single-center design, absence of external validation. Future
work should pursue multicenter external validation, cali-
brated operating points tailored to clinical use-cases, true
signal +image fusion to test for incremental gains in accu-
racy and robustness, and prospective studies quantifying
both time savings and diagnostic impact across patient
subgroup.

Conclusion

The integration of curve analysis and machine learning con-
tributes to the classification of urodynamic events in CMG,
enabling more accurate detection of involuntary detru-
sor contractions and low bladder compliance. Daubechies
Wavelet has a higher accuracy (84%) in classifying graphs
and analyze all the quantitative data, thus increasing inter-
pretability. This method surpasses traditional approaches,
addressing challenges posed by common artifacts in Urody-
namics. The application of advanced computer vision tech-
niques and specific algorithms has proven fundamental in
enhancing the objectivity and accuracy of evaluations. These
elements support semi-automated, faster (<20 s) traces
review while preserving transparency (Grad-CAM ++ for
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image decisions) and focusing quantification on physiologi-
cally meaningful segments, These advancements provide a
detailed analysis of quantitative information in clinical prac-
tice, quality control of urodynamics studies and facilitating
semi-automated chart reviews and enabling more reliable
diagnoses and personalized treatments for lower urinary
tract disorders. The combination of Al techniques with
expert supervision could offer a practical system for gener-
ating high-quality urodynamic reports, reducing interpreta-
tion time and making it applicable in all healthcare settings.
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