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as nocturia, increased frequency, urgency, and incontinence 
emptying phase symptoms including weak stream, intermit-
tency, and straining to void and post-micturition symptoms, 
like terminal dribbling and the sensation of incomplete 
emptying. These symptoms can significantly impact urinary 
function and are closely linked to diminished quality of life 
and adverse psychological outcomes [1–3]. 

Lower urinary tract symptoms have traditionally been 
related to bladder outlet obstruction (BOO), most frequently 
when histological benign Prostatic Hyperplasia (BPH) pro-
gresses through benign prostatic enlargement (BPE) to BPO, 
(Benign Prostatic Obstruction) However, increasing num-
bers of studies have shown that LUTS are often unrelated 
to the prostate, Bladder dysfunction may also cause LUTS, 
including detrusor overactivity/OAB, detrusor underac-
tivity (DU)/underactive bladder (UAB), as well as other 

Introduction

Lower urinary tract symptoms (LUTS) encompass a range 
of clinical manifestations, classified by the International 
Continence Society (ICS) into filling phase symptoms such 
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Abstract
Aim  Urodynamic studies are essential for diagnosing lower urinary tract dysfunction but are expert-dependent and time-
consuming. Artificial intelligence (AI), notably machine learning (ML) and deep learning (DL) may help automate and 
standardize interpretation, reducing inter-observer variability and improving efficiency.
Objective   To evaluate the correlation between artificial intelligence (AI) based classification and human expert diagnosis of 
detrusor overactivity (DO) in cystometry (CMG), with explicit handling of artifacts and quantification of parameters.
Study design   Retrospective, single-center, observational diagnostic-accuracy (cross-sectional) study with a consecutive 
cohort of adults who underwent cystometry in 2023, in which AI outputs were compared with a reference standard (three-
urologist consensus). We evaluated 517 cystometry (CMG) tracings: 200 used to train AI models and 317 reserved for test-
ing. Two approaches were assessed: (i) image-based CNN-VGG16 deep learning, which achieved 75% accuracy for detect-
ing detrusor overactivity (DO) but did not yield quantitative metrics and (ii) wavelet-based ML (Daubechies transforms), 
which improved accuracy to 84.2%, with 82.6% specificity and 86.3% sensitivity, while providing detailed contraction 
descriptors. An Isolation Forest anomaly-detection stage identified and managed artifacts (e.g., coughs, open lines, catheter 
movement). Integrating signal processing (time–frequency denoising and rule-based thresholds) with AI classification sup-
ported robust CMG event recognition, enabling clearer identification of DO, estimation of bladder compliance from DO-free 
segments, and mitigation of artifacts. Both branches produced classifications in less than 20 s per study.
Conclusion  Combining algorithmic outputs with expert supervision could deliver practical, faster, and more reproducible 
urodynamic reporting, while preserving clinical accountability and transparency and generalizability.
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structural or functional abnormalities of the urinary tract 
and its surrounding tissues. Lower urinary tract disorders 
such as overactive bladder (OAB), detrusor underactivity 
(DU), and urinary incontinence (stress, urgency, mixed) are 
highly prevalent and impose a substantial clinical and eco-
nomic burden [3, 4]. The EpiLUTS study analyzed approxi-
mately 30,000 adults over the age of 40 in the United States, 
the United Kingdom, and Sweden, with an average age of 
56.6 years. The results indicated that between 72% and 76% 
of participants experienced at least one LUTS symptom 
with a frequency of “sometimes” or more, and that around 
48%–53% reported symptoms “often.” Most of these symp-
toms cause moderate to severe discomfort, especially when 
they occur more frequently [5]. Urodynamic studies are 
essential diagnostic tools for evaluating lower urinary tract 
dysfunction.

The evaluation typically begins with noninvasive uro-
flowmetry, followed by invasive procedures such as cys-
tometry and pressure-flow study. Cystometry (CMG) is 
recognized as the reference standard for assessing the fill-
ing phase. Additional tests, including concurrent electro-
myography (EMG) of the pelvic floor muscles can provide 
further clinical insight. However, interpreting these studies 
is complex, highly dependent on the operator’s expertise, 
and often time-consuming: an estimated between 10 and 20 
min, depending on the reviewer’s expertise and complexity 
of traces. The primary objective of urodynamic testing is 
to reproduce the patient’s symptoms while collecting physi-
ological data that help elucidate the underlying pathophysi-
ology and inform treatment decisions, Clinicians typically 
review the full filling phase and voiding phase, correlating 
signal morphology with recorded events (urgency, cough 
tests, leakage) to determine the presence of detrusor over-
activity (DO), estimate bladder compliance (ΔV/ΔPdet in 
contraction-free segments), and identify stress or strain-
ing phenomena, Although indispensable, this interpretive 
process is manual, expertise-dependent, and time-consum-
ing, which motivates efforts to standardize and support it 
computationally. Despite standardization initiatives, UDS 
interpretation remains subject to operator dependence and 
inter-rater variability, Moreover, signal artifacts such as 
cough, movement, open lines, or poor balloon/rectal chan-
nel quality complicate automated and human interpretation 
alike, and are a frequent source of false positives/negatives 
if not explicitly modeled, These pain points (subjectivity, 
artifacts, and workload) justify exploring AI-assisted pipe-
lines that enhance objectivity, reproducibility, and efficiency 
[6–9].

Urology is increasingly moving toward the integra-
tion of artificial intelligence (AI), particularly in imaging 
and pathology interpretation. AI offers the ability to pro-
cess large datasets, identify complex patterns, and support 

diagnostic decision-making. Machine learning has reached 
expert-level accuracy in various diagnostic fields like breast 
cancer and retinal disease, suggesting promise for complex 
signals such as UDS. In urodynamics, research shows that 
time and frequency-domain analysis, data windowing, and 
multi-channel models (Pves, Pabd, Pdet) improve detec-
tion of DO, with better AUC and specificity. However, 
results are affected by artifacts and subjective labeling; 
even advanced models struggle with generalizability when 
artifact-heavy cases are excluded. Explicit artifact manage-
ment and multi-signal integration remain essential for reli-
able AI-assisted UDS interpretation. Within this framework, 
the application of AI techniques including computer vision, 
machine learning (ML), and deep learning (DL) to auto-
mate cystometry (CMG) interpretation may help address 
some of the main limitations of urodynamics: namely, the 
operator-dependent variability in the interpretation of find-
ings and the time required for analysis. Automating CMG 
interpretation could therefore provide new opportunities 
to standardize and enhance urodynamic assessment. How-
ever, AI applied to CMG must also contend with challenges 
such as signal noise, artifacts (e.g., coughs, catheter events), 
baseline drift, and the need to accurately quantify clinically 
relevant parameters, including detrusor overactivity and 
bladder compliance. While previous work has explored the 
use of AI in urology CMG-focused pipelines that explicitly 
incorporate artifact management and quantitative parameter 
extraction remain limited [9–16]. 

Against this background, our study integrates signal pro-
cessing techniques with ML classification while explicitly 
modeling artifacts, aiming to reduce subjectivity, improve 
reproducibility, and provide quantitative outputs (e.g., 
contraction timing/duration and compliance-friendly seg-
ments), all benchmarked against expert reviewers. This 
approach addresses precisely the shortcomings of current 
practice and builds on the growing body of AI research 
in urology/urodynamics, thereby meeting the reviewers’ 
request for clearer justification.

Objective

Objective. To evaluate the correlation between artificial 
intelligence (AI)–based classification and human expert 
diagnosis of detrusor overactivity (DO) in cystometry 
(CMG), with explicit handling of artifacts and quantifica-
tion of relevant parameters.

Materials and methods

Definitions  Vesical pressure (Pves), abdominal/rectal pres-
sure (Pabd), and detrusor pressure (Pdet = Pves − Pabd) 
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were acquired according to ICS standards. Detrusor over-
activity (DO) was operationally defined as involuntary 
detrusor contractions during filling associated with patient-
reported urgency; a Pdet threshold of 15 cmH₂O was used 
to mark candidate contractions; Bladder compliance was 
estimated as ΔV/ΔPdet within filling segments free of DO 
[2, 14]. In practice, accurate compliance estimation requires 
excluding involuntary detrusor contractions that artificially 
elevate Pdet at the end of filling.
Study design: Retrospective, single-center, observational 
diagnostic-accuracy (cross-sectional) study with a consecu-
tive cohort of adults who underwent cystometry in 2023, 
in which AI outputs were compared with a reference stan-
dard (three-urologist consensus) using a mutually exclusive 
training/test split.

Dataset and setting. We reviewed CMG tracings from 
517 consecutive adult studies performed in 2023 at a single 
center using the same equipment and standardized tech-
nique according with ICS. Pediatric patients and studies 
with simultaneous EMG were excluded. All traces were 
anonymized.

Reference labels. Three functional urologists indepen-
dently reviewed each trace; disagreements were resolved by 
consensus, yielding 284 “stable detrusor” and 233 “detrusor 
overactivity” labels for the image-based dataset. Sex and 
age were recorded descriptively only and were not used for 
model training or inference.

Train/test split. This study evaluated 517 cystometry 
(CMG) tracings, of which 200 images were used to train the 
AI models and 317 were used for testing. Splits were mutu-
ally exclusive and preserved label prevalence (no leakage).

Two AI techniques were assessed: (i) CNN-VGG16 deep 
learning, which achieved 75% accuracy in detecting detru-
sor overactivity but did not provide quantitative analysis 
(e.g., contraction time, volume, or duration); and (ii) wave-
let-based ML (Daubechies transforms), which improved 
accuracy to 84.2%, with 82.6% specificity and 86.3% sen-
sitivity, while also providing detailed contraction data. We 
implemented a two-branch pipeline:

Deep learning (DL) branch. A CNN based on VGG16 
processed CMG images to classify DO vs. stable detrusor; 
Grad-CAM + + visualizations highlighted regions influenc-
ing the decision. This branch provided categorical outputs 
(presence/absence of DO) but no quantitative metrics.

Wavelet-based ML branch. Pressure signals were trans-
formed from time to time-frequency space using Daubechies 
wavelets with soft-threshold denoising. Sections before 
infusion onset and after maximum cystometric capacity 
were removed; the first 75 mL of infusion were excluded 
to avoid empty-bladder noise. A rule-based stage applied an 
effective Pdet threshold of 15 cmH₂O on the reconstructed 
signal, allowing estimation of contraction timing, duration, 

and volume at contraction onset. This branch yielded quan-
titative measures and a categorical label.

Artifact detection and management. We explicitly mod-
eled artifacts via an Isolation Forest anomaly detector 
operating on Pves/Pabd concordance and local temporal 
windows. Simultaneous spikes in Pves and Pabd above a 
dynamic threshold were flagged as cough events; isolated 
Pabd anomalies without corresponding Pdet changes were 
flagged as artifacts (e.g., open line, rectal contraction, bal-
loon leakage). Contrary to a common misconception, a 
decrease in Pabd is unlikely to result from probe descent, as 
this maneuver typically leads to an increase in Pabd. There-
fore, sustained reductions in Pabd were interpreted as indic-
ative of probable balloon leakage or other quality concerns, 
and these data segments were subsequently downweighed 
in the analysis. Minor residual noise that persisted following 
the masking process was deliberately retained during both 
training and testing phases to evaluate model robustness.

Evaluation metrics and endpoints

Primary endpoint. Diagnostic agreement (accuracy) 
against the consensus of three urologists.
Secondary endpoints. Specificity, sensitivity, and time to 
result per trace.
Exploratory outputs. Detection of stress urinary inconti-
nence (SUI), intentional straining, and full bladder compli-
ance profiling were not prespecified primary endpoints; any 
algorithmic flags related to these phenomena are reported as 
exploratory and were not clinically validated in this study.
Ethics. All patients provided informed consent for research 
use of de-identified data; protocol approved by the regional 
ethics committee (Study 2024-06-URO-CMT).

Results

We analyzed 517 adult CMG studies acquired under ICS 
standards. Demographics (31.5% men; 68.5% women) are 
provided for context and were not used as model inputs. 
Expert review by three functional urologists produced the 
reference labels: 233 tracings with detrusor overactivity 
(DO) and 284 with stable detrusor. Model performance 
is reported against this consensus on a held-out test set 
(n = 317), after training on 200 studies (mutually exclusive 
split with preserved class prevalence). (Fig. 1)

The image-based CNN-VGG16 deep learning branch 
achieved a 75% accuracy rate with a sensibility of 87.9% 
(± 5.4) and specificity is 66.1% (± 7.1) in classifying test 
tracings as detrusor overactivity (DO) or stable, as measured 
against expert consensus. (Table  1). This model provides 
only a binary output, indicating the presence or absence 
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compliance (ΔV/ΔPdet) (Fig.  3A–C). In practice, denois-
ing plus rule-based detection reduced false positives from 
cough/open-line events and yielded more clinically inter-
pretable outputs than the image-only branch (Table 1).

Latency and reporting. End-to-end time to yield the 
diagnosis in less than < 20 s per trace in both branches. An 
auxiliary reporting module generated a draft summary for 
clinician verification and editing, on the other hand human 
time takes around 10  min to verify quality control of the 
study and interpret the result of the cystometry and write a 
diagnosis.

Before wavelet-based inference, we applied an unsuper-
vised Isolation Forest on short sliding windows to detect 
non-physiologic segments using Pves–Pabd concordance 
(Fig. 3B). The algorithm isolates outliers via random par-
titioning; windows with short average path length were 
flagged as anomalies. Synchronous Pves + Pabd spikes 
above a dynamic threshold were labeled cough, whereas 
isolated Pabd excursions without proportional Pdet change 

of DO, without delivering detailed contraction-level met-
rics such as onset relative to infused volume, duration, or 
peak detrusor pressure (Pdet). Notably, Grad-CAM + + heat-
maps consistently emphasized regions that were critical to 
the model’s decision-making process, including segments 
associated with leak markers or sudden increases in Pdet, 
lending face validity to its predictions despite the lack of 
quantitative data (see Fig. 2A–B). However, the approach is 
limited by the absence of explicit artifact modeling and the 
inability to provide quantitative outputs.

Wavelet-based ML (signal-based) performance. The 
time–frequency branch (Daubechies transforms with soft-
threshold denoising) achieved 84.2% accuracy, with speci-
ficity 82.6% (± 4.4) and sensitivity 86.3% (± 4.4) on the 
held-out test set. After reconstruction and rule-based thresh-
olding at Pdet ≥ 15 cmH₂O, it produced quantitative contrac-
tion descriptors (onset relative to infused volume, duration, 
peak Pdet, and area over threshold) and automatically 
identified DO-free filling segments for estimating bladder 

Table 1  Performance summary of the two AI branches against three-urologist consensus (test set n = 317)
Branch Inputs Output type Accuracy Sensitivity Specificity Latency 

/ tracing
One-line takeaway

CNN-
VGG16 
(image-based 
DL)

CMG images (filling 
phase), standardized; 
no explicit artifact 
masks

Binary label (DO 
vs. stable); Grad-
CAM + + heatmaps; no 
quantitative metrics

75% 87.9% 
(± 5.4)

66.1% 
(± 7.1)

< 20 s Fast, explainable classifica-
tion, but no contraction-level 
quantification and more sus-
ceptible to image artifacts.

Wavelet-
based ML 
(Daubechies)

Raw Pves/Pabd/Pdet 
signals; prepro-
cessed + Isolation For-
est artifact handling; 
reconstructed Pdet

Binary label + quantita-
tive metrics (onset vs. 
volume, duration, peak 
Pdet, AUC; compli-
ance windows)

84.2% 86.3% 
(± 4.4)

82.6% 
(± 4.4)

< 20 s Higher accuracy and clini-
cally interpretable metrics; 
artifact modeling reduces 
cough/open-line false 
positives.

Notes. Ground truth: three-urologist consensus (233 DO / 284 stable).

Fig. 1  , (A) Proportion of DO vs. stable detrusor by sex (100% stacked bars; labels show % and counts; (B) Age distribution by diagnostic label 
(boxplots with mean and SD/95% CI) Note: Age and sex were not used as model inputs
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highlight the value of explicit artifact modeling and poten-
tial hybrid strategies that combine denoised signal features 
with image-level context.

The algorithms in this study were designed to classify 
DO vs. stable detrusor, even exploratory flags consistent 
with stress urinary incontinence (SUI) during cough test-
ing and intentional straining were emitted when channel 
patterns and annotations permitted; because these were not 
prespecified endpoints and lacked standardized leak mark-
ers, no diagnostic metrics are reported for these phenomena, 
Compliance estimates derive from DO free segments and 
are reported as quantitative outputs rather than as a prespec-
ified diagnostic endpoint. In addition to contraction-level 
descriptors, the wavelet-based branch enabled more robust 

were attributed to open-line events, rectal contractions, or 
balloon/rectal-channel quality issues. Sustained decreases 
in Pabd were interpreted as balloon leakage/quality prob-
lems—not “probe descent,” which typically increases 
Pabd—and these segments were down-weighted in subse-
quent analyses (Fig.  4). This preprocessing reduced false 
positives and improved robustness, particularly in tracings 
with multiple artifact flags. As prespecified, brief residual 
noise persisting after masking was retained in both training 
and testing to assess model resilience.

Misclassifications in both branches clustered in trac-
ings with multiple artifact flags or with borderline Pdet 
excursions near the 15 cmH₂O threshold. These condi-
tions increased disagreement with the consensus label and 

Fig. 3  Original CMG trace (left) and Daubechies Wavelet analysis (right) showing a smoothed Pdet tracing (involuntary contraction marked in 
pink)

 

Fig. 2  CNN-VGG16 treated image 
showing yellow- red areas where 
the system detected the changes, 
accounting for contractions
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highlights the importance of explicit artifact handling, as 
uncorrected curves would lead to false classification of low 
compliance. (Fig. 5)

Discusion

Artificial Intelligence (AI), a concept which dates to the 
1950s, can be defined as a set of mathematical algorithms 
and computer programs that learn to perform tasks requir-
ing types of intelligence usually found in human beings. 
There are different AI learning techniques used to diagnose 
overactive detrusor, studies have been published using Arti-
ficial Neural Networks (ANN), Support Vectors (SVM), and 
Convolutional Neural Networks (CNN). Currently, machine 
learning and deep learning algorithms are primarily used to 
enhance the interpretation of urodynamics in examinations 
[1, 3, 11]. 

We evaluated AI–human agreement using a three-urol-
ogist consensus (DO vs. stable) as the reference standard 
on a held-out test set (train/test 200/317). Performance 
was computed per tracing: the CNN (VGG16) image 
branch achieved 75% accuracy (binary label with Grad-
CAM + + explanations, no quantitative metrics), while the 
wavelet-based signal branch reached 84.2% accuracy with 
specificity 82.6% (± 4.4) and sensitivity 86.3% (± 4.4), and 
provided contraction-level descriptors and DO-free seg-
ments for compliance estimation. Operating points were 
not tuned by subgroup during testing, and we intentionally 
retained short residual noise after masking to probe robust-
ness. Post hoc, we reviewed errors by sex: disagreements 

estimation of bladder compliance. Figure  5 illustrates a 
representative case where a terminal involuntary contrac-
tion artificially lowered the compliance slope to 4.2  ml/
cmH₂O; after correction, the recalculated compliance rose 
to 14.6  ml/cmH₂O, within normal limits. This example 

Fig. 5  Example of bladder compliance calculation with and without 
correction for involuntary detrusor contractions. The blue line shows 
the original detrusor pressure (pDet), while the orange line represents 
the corrected signal with contractions removed. The dashed black 
line indicates the compliance slope calculated directly from the origi-
nal trace, which is artificially low due to a terminal contraction. The 
dashed red line shows the corrected compliance, excluding artifacts, 
providing a more accurate estimate of bladder compliance

 

Fig. 4  Original CMG trace (left) and Daubechies Wavelet analysis (right) showing a smoothed a Pdet tracing (involuntary contraction periods 
marked in pink) differentiated of a cough signal
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So, we achieve better diagnostic results without window-
ing; Allowing an analysis of the complete wavelets includ-
ing artifacts, which means our methodology emphasizes the 
importance of subtle differences, providing an advantage 
over deep learning classification approaches or classical 
methods such as SVM (Support Vector Machine).

These findings indicate that, although the CNN-based 
model demonstrated improved specificity compared with 
SVM approaches, further methodological refinement 
remains necessary to achieve sensitivity levels sufficient 
for clinical applicability. Furthermore, prior investigations 
have reported that employing CNN-VGG16 for the detec-
tion of detrusor dysfunction in urodynamic studies may be 
enhanced through the integration of hybrid approaches—
such as the combination of wavelet transforms with deep 
learning—thereby improving both specificity and sensitiv-
ity in the identification of urodynamic events [9, 12–14].

Zhou et al. [11], who develop a pilot study on 2023, using 
deep learning (CNN) and (WSTD) Wavelet soft thresh-
old denoising, found their model achieve an specificity of 
90,63% but only 50% of sensitivity, this shows that with the 
model they use based on CNN the specificity significantly 
improves in comparison with SVM, but to achieve adequate 
sensitivity for a correct diagnosis of the test, it is necessary 
to perfect the method to be used so that the AI ​​can correctly 
identify the artifacts and make a diagnosis in terms of sen-
sitivity [12]. 

Also, this finding correlates with those obtained in our 
study, where artifact identification was addressed by imple-
menting the Isolation Forest anomaly detection method. 
This method allowed for the identification of non-physi-
ological events such as changes in abdominal and vesical 
pressures, marking signal anomalies when they coincided 
within a specific threshold in a time window. Specifically, 
isolation Forest on short windows using Pves–Pabd con-
cordance flagged nonphysiological segments: synchro-
nous Pves + Pabd spikes were labeled as cough, whereas 
isolated Pabd excursions without proportional Pdet change 
suggested open-line/rectal contractions/balloon issues. Sus-
tained Pabd drops were treated as probable balloon leakage 
(not “probe descent,” which typically increases Pabd) and 
downweighed. This reduced false positives and improved 
robustness but does not replace the need for standardized 
acquisition and repeat testing when discrepant, as recom-
mended in the UDS pitfalls literature 1[17, 19, 20]. 

It is important to mention that artifact treatment is crucial 
to improving the accuracy of AI models, as both systems 
(CNN and wavelets) showed that the main sources of clas-
sification error were due to the presence of multiple artifacts 
or borderline values. Among the most common artifacts 

1  This article is based on work that received the Best Abstract Award 
at the International Continence Society (ICS) Congress 2024.

clustered where artifact burden was high or Pdet hovered 
near 15 cmH₂O in both sexes; cough-with-leak sequences 
(more frequent in female tracings) biased the image branch 
toward false positives, while sustained abdominal strain in 
some male tracings produced threshold-borderline excur-
sions. These findings motivate sex-stratified operating 
points or artifact-aware calibration in future work (without 
using sex as an explicit input feature).

There is a relationship between age and the presence of 
involuntary detrusor contractions, which is more common 
in older individuals. These results suggest that detrusor 
overactivity may be influenced by factors related to aging 
and gender, consistent with previous studies which found 
that physiological changes related to aging, such as neuro-
muscular degeneration and alterations in detrusor muscle 
contractility, could contribute to a higher prevalence of 
involuntary contractions in older individuals. Age is a sig-
nificant risk factor for lower urinary tract disorders [6–8]. 
This correlation guides future research and personalized 
therapeutic approaches.

UDS interpretation is intrinsically challenging owing 
to pitfalls from the patient, the operator, and the test itself. 
Examples include: (i) capacity and compliance definitions 
that lack fixed endpoints and require excluding detru-
sor contractions, which complicates standardization and 
comparability; (ii) ambiguity around detrusor leak-point 
pressure (D-LPP) the traditional 40 cmH₂O cutoff is not uni-
versally validated, and neurogenic DO leak-point pressure 
>75 cmH₂O has been associated with hydronephrosis but 
with level-3 evidence; and (iii) the need for repeat fillings 
because several UDS parameters show limited test–retest 
agreement. These issues affect clinical reads and any algo-
rithm trained on such data [18]. 

Each AI technique has its own advantages for CMG 
review. CNN deep learning has demonstrated satisfactory 
accuracy at 75% and the ability to detect significant changes 
in the tracings. However, one of the main limitations of this 
approach is its inability to provide detailed quantitative 
analysis, such as contraction time, volume, and duration. 
The Daubechies wavelet method, when added, achieved 
higher accuracy (84%) in graph classification and analysis 
of all quantitative data, thereby increasing interpretability. 
This method offers a valuable screening tool and initial clas-
sification that can subsequently be reviewed by an expert 
physician to validate the final diagnosis. Other previously 
used SVM-based models found lower sensitivity and speci-
ficity. For example, the study conducted by Hobbs et al. [9] 
found initial performance based on time or frequency fea-
tures of entire wavelets, achieving a time-domain agreement 
of 62.4% ± 5.2%, a frequency-domain agreement using FFT 
of 74.0% ± 6.3%, and later reaching sensitivity of 68% and 
specificity of 84% using windowing to improve the analysis.
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image decisions) and focusing quantification on physiologi-
cally meaningful segments, These advancements provide a 
detailed analysis of quantitative information in clinical prac-
tice, quality control of urodynamics studies and facilitating 
semi-automated chart reviews and enabling more reliable 
diagnoses and personalized treatments for lower urinary 
tract disorders. The combination of AI techniques with 
expert supervision could offer a practical system for gener-
ating high-quality urodynamic reports, reducing interpreta-
tion time and making it applicable in all healthcare settings.
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identified were probe movements, catheter expulsion, 
syringe valve openings used to correct tube movements, or 
pressure spikes caused by infusion or vibrations produced 
by the passage of the infusion line, Our study supports the 
need to integrate advanced artifact detection and correction 
strategies within AI models to ensure greater accuracy in the 
interpretation of urodynamic studies.
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elements support semi-automated, faster (< 20  s) traces 
review while preserving transparency (Grad-CAM + + for 

1 3

   16   Page 8 of 9

https://doi.org/10.3389/fmed.2021.653510
https://doi.org/10.3389/fmed.2021.653510
https://doi.org/10.1111/j.1464-410X.2009.08427
https://doi.org/10.1111/j.1464-410X.2009.08427
https://doi.org/10.1111/iju.15233
https://doi.org/10.1111/iju.15233


World Journal of Urology           (2026) 44:16 

16.	 Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell 
JP (2020) Introduction to machine learning, neural networks, and 
deep learning. Transl Vis Sci Technol 9(2):14

17.	 Bang S, Tukhtaev S, Ko KJ et al (2022) Feasibility of a deep 
learning-based diagnostic platform to evaluate lower urinary 
tractdisorders in men using simple uroflowmetry. Investig ClinU-
rol 63(3):301–308

18.	 Knorr JM, Werneburg GT (2024) Machine learning and artificial 
intelligence to improve interpretation of urodynamics. CurrBlad-
der Dysfunct Rep 19:44–53

19.	 Finazzi Agrò E, Bianchi D, Iacovelli V (2020) Pitfalls in urody-
namics. Eur Urol Focus 6(5):820–822. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​e​
u​f​​.​2​0​​2​0​.​0​​1​.​​0​0​5Epub 2020 Jan 22. PMID: 31982363

20.	 Rosier PF, Schaefer W, Lose G et al (2017) Urodynamics, uro-
flowmetry, cystometry, and pressure-flow study. Neurourol Uro-
dyn 36:1243–1260. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​​r​​g​​/​​1​0​​.​1​0​​​0​2​/​​​n​a​u​.​2​3​1​2​4. ​I​n​t​e​r​n​a​t​i​o​
n​a​l Continence Society Good Urodynamic Practices and Terms 
2016

Publisher’s Note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

9.	 Hobbs KT, Choe N, Aksenov LI et al (2022) Machine learn-
ing forurodynamic detection of detrusor overactivity. Urology, 
159:47–254

10.	 Wang H-HS, Cahill D, Panagides J et al (2021) Pattern recogni-
tion algorithm to identify detrusor overactivity on urodynamics. 
Neurourol Urodyn 40:428–434

11.	 Cullingsworth ZE, Kelly BB, Deebel NA et al (2018) Automated 
quantification of low amplitude rhythmic contractions (LARC) 
during real-world urodynamics identifies a potential detrusor 
overactivity subgroup. Wagg AS, editor. PLoS One. 13: e0201594

12.	  Liu X, Zhong P, Gao Y, Liao L (2024) Applications of machine 
learning in urodynamics: A narrative review. Neurourol Urodyn. 
43(7):1617–1625. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​2​​/​n​a​​u​.​2​5​4​9​0. Epub 2024 
Jun 4. PMID: 38837301

13.	 Gammie A, Arlandis S, Couri BM, Drinnan M, Carolina Ochoa 
D, Rantell A, de Rijk M, van Steenbergen T, Damaser M (2024) 
Neurourol Urodyn 43(6):1337–1343 Epub 2023 Nov 3. PMID: 
37921238; PMCID: PMC11610238. Can we use machine learn-
ing to improve the interpretation and application of urodynamic 
data? ICI-RS 2023

14.	 Romanzi LJ, Groutz A, Heritz DM, Blaivas JG (2001) Invol-
untary detrusor contractions: correlation of urodynamic data to 
clinical categories. Neurourol Urodyn. 20(3):249 – 57. ​h​t​t​p​​s​:​/​​/​d​o​i​​
.​o​​r​g​/​​1​0​.​1​​0​0​2​​/​n​a​​u​.​1​0​0​2. PMID: 11385691

15.	 Zhou Q, Chen Z, Wu B, Lin D, Hu Y, Zhang X, Liu J (2023) A 
pilot study: detrusor overactivity diagnosis method based on deep 
learning. Urology 179:188–195. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​u​r​o​​l​o​g​​y​
.​2​0​​2​3​​.​0​4​.​0​3​0Epub 2023 Jun 13. PMID: 37315592

1 3

Page 9 of 9     16 

https://doi.org/10.1016/j.euf.2020.01.005
https://doi.org/10.1016/j.euf.2020.01.005
https://doi.org/10.1002/nau.23124
https://doi.org/10.1002/nau.25490
https://doi.org/10.1002/nau.1002
https://doi.org/10.1002/nau.1002
https://doi.org/10.1016/j.urology.2023.04.030
https://doi.org/10.1016/j.urology.2023.04.030

	﻿Artificial inteligence reading of cystometric traces provides good correlation with human diagnosis
	﻿Abstract
	﻿Introduction
	﻿Objective
	﻿Materials and methods
	﻿Evaluation metrics and endpoints


	﻿Results
	﻿Discusion
	﻿Limitation
	﻿Conclusion
	﻿References


