Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154908
Campo DC Valoridioma
dc.contributor.authorMonzón Verona, José Miguelen_US
dc.contributor.authorGarcia-Alonso Montoya, Santiagoen_US
dc.contributor.authorSantana Martin, Francisco Jorgeen_US
dc.date.accessioned2026-01-13T07:47:24Z-
dc.date.available2026-01-13T07:47:24Z-
dc.date.issued2025en_US
dc.identifier.issn2076-3417en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/154908-
dc.description.abstractThis work establishes a large language model (LLM) specialized in the domain of thermoelectric generators (TEGs), for deployment on local hardware. Starting with the generalist JanV1-4B model and Qwen3-4B-Thinking-2507 models, an efficient fine-tuning (FT) methodology using quantized low-rank adaptation (QLoRA) was employed, modifying only 3.18% of the total parameters of thee base models. The key to the process is the use of a custom-designed dataset, which merges deep theoretical knowledge with rigorous instruction tuning to refine behavior and mitigate catastrophic forgetting. The dataset employed for FT contains 202 curated questions and answers (QAs), strategically balanced between domain-specific knowledge (48.5%) and instruction-tuning for response behavior (51.5%). Performance of the models was evaluated using two complementary benchmarks: a 16-question multilevel cognitive benchmark (94% accuracy) and a specialized 42-question TEG benchmark (81% accuracy), scoring responses as excellent, correct with difficulties, or incorrect, based on technical accuracy and reasoning quality. The model's utility is demonstrated through experimental TEG design guidance, providing expert-level reasoning on thermal management strategies. This study validates the specialization of LLMs using QLoRA as an effective and accessible strategy for developing highly competent engineering support tools, eliminating dependence on large-scale computing infrastructures, achieving specialization on a consumer-grade NVIDIA RTX 2070 SUPER GPU (8 GB VRAM) in 263 s.en_US
dc.languageengen_US
dc.relation.ispartofApplied Sciencesen_US
dc.sourceApplied Sciences-Basel,v. 15 (24), (Diciembre 2025)en_US
dc.subjectInvestigaciónen_US
dc.subject.otherModulesen_US
dc.subject.otherLlmen_US
dc.subject.otherQloraen_US
dc.subject.otherJanv1-4Ben_US
dc.subject.otherFine-Tuningen_US
dc.subject.otherThermoelectric Generatorsen_US
dc.titleFine-Tuning a Local LLM for Thermoelectric Generators with QLoRA: From Generalist to Specialisten_US
dc.typeArticleen_US
dc.identifier.doi10.3390/app152413242en_US
dc.identifier.scopus105025779682-
dc.identifier.isi001646144200001-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid26531597500-
dc.contributor.authorscopusid35106946100-
dc.contributor.authorscopusid26531766200-
dc.identifier.eissn2076-3417-
dc.identifier.issue24-
dc.relation.volume15en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages29en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Monzon-Verona, JM-
dc.contributor.wosstandardWOS:García-Alonso, S-
dc.contributor.wosstandardWOS:Santana-Martín, FJ-
dc.date.coverdateDiciembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,277
dc.description.sjrqQ3
dc.description.miaricds9,8
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Instrumentación avanzada-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.deptGIR IUMA: Instrumentación avanzada-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0001-9694-269X-
crisitem.author.orcid0000-0003-4389-0632-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameMonzón Verona, José Miguel-
crisitem.author.fullNameGarcia-Alonso Montoya, Santiago-
crisitem.author.fullNameSantana Martin, Francisco Jorge-
Colección:Artículos
Adobe PDF (2,36 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.