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Abstract

This work establishes a large language model (LLM) specialized in the domain of ther-
moelectric generators (TEGs), for deployment on local hardware. Starting with the gener-
alist JanV1-4B model and Qwen3-4B-Thinking-2507 models, an efficient fine-tuning (FT)
methodology using quantized low-rank adaptation (QLoRA) was employed, modifying
only 3.18% of the total parameters of thee base models. The key to the process is the use
of a custom-designed dataset, which merges deep theoretical knowledge with rigorous
instruction tuning to refine behavior and mitigate catastrophic forgetting. The dataset
employed for FT contains 202 curated questions and answers (QAs), strategically balanced
between domain-specific knowledge (48.5%) and instruction-tuning for response behavior
(51.5%). Performance of the models was evaluated using two complementary benchmarks:
a 16-question multilevel cognitive benchmark (94% accuracy) and a specialized 42-question
TEG benchmark (81% accuracy), scoring responses as excellent, correct with difficulties, or
incorrect, based on technical accuracy and reasoning quality. The model’s utility is demon-
strated through experimental TEG design guidance, providing expert-level reasoning on
thermal management strategies. This study validates the specialization of LLMs using
QLoRA as an effective and accessible strategy for developing highly competent engineering
support tools, eliminating dependence on large-scale computing infrastructures, achieving
specialization on a consumer-grade NVIDIA RTX 2070 SUPER GPU (8 GB VRAM) in 263 s.

Keywords: LLM; QLoRA; JanV1-4B; fine-tuning; thermoelectric generators

1. Introduction

Recent advances in large language models (LLMs) have opened new frontiers for
assisting with complex engineering design tasks [1]. However, their effective application in
highly specialized domains faces two main challenges: the lack of deep, domain-specific
knowledge, which limits their accuracy and reliability, and the high computational and
energy costs associated with their training and deployment.

The following is a brief comparative analysis of previous work on the use of LLM in
specialized engineering domains. In [2], a technical analysis FT is performed using LLaMA
3.1 8B with QLoRA for hydrogen/renewable energy strategies, focusing on investment
decisions and regulatory compliance. Their evaluation is based on multiple constraints (cost,
efficiency) but does not include differential equation modeling or experimental validation of
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physical devices. Our work complements this approach by adding quantitative reasoning
about coupled (thermal-electrical) phenomena.

In [3] EnergyGPT model was presented, a LLaMA 3.1 8B model specializing in electric-
ity markets with the EnergyBench benchmark for microgrid optimization. Although LoRA
and local deployment is used, the model acts as a decision assistant, not as a generator of
physical hypotheses. The key difference with our work lies in the capacity for physical
synthesis: our LLM proposes redesigns of TEGs (thermal diffusers, thermal bridges) based
on trade-offs derived from equations of state; it does not merely retrieve information.

While previous literature [2,3] optimizes decisions, our model executes symbolic
reasoning, transforming it from an informational assistant to a physical design tool.

Furthermore, although alternative approaches such as RAG [1,4] can be effective when
the task is limited to document retrieval, their performance is limited in domains such as
TEGs, where the answer requires internal synthesis of equations, thermoelectric depen-
dencies, and design criteria rather than simple access to external information. Therefore,
this work adopts a parameter-efficient fine-tuning (PEFT) strategy using QLoRA, which
allows the native incorporation of the physical-mathematical reasoning of the domain by
modifying only a small fraction of the model parameters, achieving deep specialization
without the costs or risks associated with full fine-tuning.

Ref. [3] presents a study on an LLM specialized for the energy sector trained with FT that
combines 4-bit quantization with low-range QLoRA adapters that allow memory savings.

In the health field, a comparative study between FT vs. Retrieval-Augmented Genera-
tion (RAG) [5] is presented for different models, in [6] an FT LLM is proposed, and in [7]
the advantages and disadvantages of FT in the agricultural field are presented.

This work addresses this gap by proposing a practical and accessible solution: the
creation of a domain-specific, specialist Al assistant designed to operate efficiently on local
hardware. The domain chosen to validate this hypothesis is thermoelectric generators
(TEGs), a field that perfectly encapsulates engineering complexity. Their modeling requires
a deep understanding of coupled physical phenomena such as the Seebeck, Peltier, and
Joule effects, the formulation of nonlinear differential equation systems, and critical reason-
ing for design optimization. The goal, therefore, is to develop a tool that can reason, model,
and analyze like a specialist engineer, thereby overcoming the limitations of generalist
LLMs that often fall short of the required accuracy and technical depth, and going beyond
the simple creation of a repository of information.

This study focuses on the domain of TEGs, solid-state devices that convert thermal
energy directly into direct current electricity using the Seebeck and Peltier effects [3]. Due
to the absence of moving parts, they operate silently, making them ideal for applications
in remote locations where thermal energy is the primary available source. However,
their modeling and optimization are considerably complex. The performance of TEGs
is intrinsically linked to the interrelation of coupled thermal and electrical phenomena,
often described by systems of nonlinear partial differential equations [9]. Furthermore,
factors such as the geometric configuration decisively influence their maximum power
output [10]. To address this domain, this article uses a four-degree-of-freedom lumped-
parameter model [11], on which the variants used for LLM training are generated. The
fundamental modification to the idea proposed in [11] consists of the specific formulation
of the Jacobian for steady-state analysis in order to reduce simulation times.

This work addresses the gap between the potential of LLMs and the demands of
this specialized TEG domain, presenting a methodology for developing a specialist LLM
based on the four-billion-parameter (4B) JanV1-4B generalist base model [12], designed
for application in local environments. It is called a base model because it has not yet
been refined.
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To overcome computational limitations and facilitate its use on consumer hardware,
parameter-efficient fine-tuning (PEFT) techniques are employed [13,14]. These methods
have demonstrated performance comparable to full fine-tuning (FT) by training only a
minimal fraction of the parameters (<1%). In particular, this work implements the quantized
low-rank adaptation (QLoRA) technique [15], an evolution of LoRA [16] that maximizes
memory efficiency and makes FT accessible on consumer hardware. This approach not only
validates the creation of an expert model in a highly complex field but also demonstrates
the feasibility of democratizing access to advanced Al tools by eliminating dependence
on large-scale computing infrastructures. The core of our methodology is based on two
fundamental pillars.

First, the development of a custom-designed training dataset that combines deep do-
main knowledge—including physical principles, fundamental equations, and terminology—
with a training dataset of instructions. This latter component is crucial for refining the
model’s behavior, ensuring it follows complex guidelines, and, fundamentally, mitigating
catastrophic forgetting [17] of its general knowledge. The primacy of quality over quantity
in the training dataset is a guiding principle in this work and a thesis empirically demon-
strated in foundational studies such as LIMA (Less Is More for Alignment) [18], which
validate the use of small but high-quality datasets to achieve exceptional performance.

Second, the implementation of a rigorous multilevel assessment framework. This
framework is designed to measure a spectrum of cognitive abilities, from retrieving funda-
mental knowledge and applying mathematical models to qualitative design reasoning and
critical analysis of numerical data. This article not only presents the development of the
specialist LLMs but also provides a comprehensive validation of their performance, detail-
ing their strengths and areas for improvement. The network was trained on a well-curated
dataset of concepts obtained from references in the TEG field [19-23].

The fundamental contributions of this work, which do not appear in the previously
analyzed state of the art, are four.

First, a comprehensive and reproducible methodology is presented, from data curation
to local deployment, to transform two general purpose LLMs, JanV1-4B [12] and Qwen3-4B-
Thinking-2507 [24], into a new specialist assistant within a highly specialized engineering
domain in TEG.

Second, a strategic design is proposed for training a new dataset that balances the
injection of deep knowledge—the “what”—with the shaping of behavior and response
ability—the “how”—which is key to mitigating catastrophic forgetting and achieving
robust performance.

Third, a new rigorous multi-level assessment framework is introduced that measures
advanced cognitive abilities, such as critical reasoning and self-correction, going beyond
traditional metrics.

And fourth, it is empirically demonstrated that it is feasible to achieve this high level
of specialization using local hardware, validating the QLoRA approach as an effective way
to democratize the development of specialist Al in TEG. In addition, the model’s utility
is demonstrated through experimental TEG design, providing expert-level reasoning on
thermal management strategies.

This document is structured as follows: Section 2 presents the lumped-parameter
mathematical model of the TEG, which serves as the knowledge base and reference for the
evaluation. Section 3 explains the FT methodology. Section 4 describes the composition
of the FT dataset. Section 5 presents and discusses the results obtained. Finally, Section 6
offers the main conclusions regarding the LLMs specializing in the field of TEG engineering
that have been developed in this work.
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2. Mathematical Model of the TEG

This section details the lumped-parameter mathematical model that describes the
behavior of a TEG. This model fulfills two fundamental functions in this work: first, it
serves as the basis for the synthetic generation of the dataset used in the FT LLM; and
second, it constitutes the reference or ground truth for the quantitative validation of the
responses generated by the expert model to questions related to its equations.

The fundamental assumptions of the lumped parameter model were explicitly estab-
lished to ensure its validity and reproducibility. Heat flow is considered one-dimensional,
which is justified by the flat and homogeneous geometry of the Peltier cells, although this
simplification ignores edge effects in peripheral areas. Furthermore, material properties are
assumed to be constant within the operating temperature range (0-90 °C). On the other
hand, the Thomson effect is neglected since the temperature gradients between faces are
relatively small, as argued by Feng et al. [20]. These assumptions clearly define the applica-
tion domain of the model, allowing its reliable use in low-to-medium-power thermoelectric
generation scenarios while acknowledging its limitations under extreme conditions where
nonlinearities become dominant.

The operating principle of a TEG is based on the application of heat flow from a
high-temperature source, Tr,, to a lower-temperature sink, T,,,;,. This flow induces a
temperature difference between the hot and cold faces of the device, which, due to the
Seebeck effect, generates a direct current voltage. The objective of the model is, therefore, to
establish a system of equations that allows calculation of the temperatures on the module’s
faces in order to determine key performance metrics, such as the electrical power supplied
to an external load.

2.1. Definition of Parameters and Variables

Figure 1 presents a simplified scheme of a TEG, showing its essential elements: heat
source, heat sink, n-type and p-type semiconductors, structural heat-conducting ceramics,
and the electric charge Ry.

TH ot X
Tc 1, T
e
Hot Ceramic |,
? ) : (-?
? ? : Ta
TL‘2 o o
) Cold Ceramic|

VYI

AAN Tamb

R,

Figure 1. Simplified outline of a TEG.

To construct this system, a thermoelectric analogy is used, whose equivalent circuit is
illustrated in the thermal circuit shown in Figure 2. Under this analogy, the heat flow [W]
is modeled as if it were an electric current, and the temperature [K] is represented as if it
were an electric potential, taking absolute zero as the ground reference node.
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Figure 2. Equivalent circuit of the coupled thermal and electrical system of the TEG.

The physical magnitudes and properties used in the lumped parameter model shown
in Figure 2 are listed in Table 1.

Table 1. Magnitudes and physical properties of the TEG lumped parameter model.

Symbol Name Unit
T, Temperature on the inner surface of the cold face. K
T Temperature on the outer surface of the hot face. K
Teo Temperature on the outer surface of the cold face. K
Te Temperature on the inner surface of the hot face. K

Tamp Cold source temperature. K
Tyot Hot zone temperature. K
qpe Peltier heat flow sink at node e. W
qpra Peltier heat flow source at node a. \
Toule = R, I2. Joule heat flow. W
qx = (T, — T;)/ Qm. Heat flow by conduction between T, and Tj. \Y
S, Seebeck coefficient. V/K
Ry, Internal electrical resistance of the module. QO
Qm Thermal resistance by conduction. K/W
Qa Thermal resistance of the ceramic on the hot face. K/W
Qc2 Thermal resistance of the ceramic on the cold face. K/W
RHeat1 Thermal resistance of the heat sink on the hot face. K/W
RHear2 Thermal resistance of the heat sink on the cold face. K/W
C. Thermal capacitance of node e of the inner hot face. J/K
Ca Thermal capacitance of node a of the inner cold face. J/K
Ca Thermal capacitance of the ceramic on the hot face. J/K
Co Thermal capacitance of the ceramic on the cold face. J/K
RL Resistance of the external electrical load. QO
I Electric current generated that circulates through the circuit. A
Vi Voltage generated at the load terminals R;.. \%
Useebeck = (T, — Ty). Seebeck voltage. \Y

2.2. Transient Regime Analysis

The circuit shown in Figure 2 is a proper nonlinear circuit. Its complexity order is
four. The system order is four because it has four independent energy storage elements
(thermal capacitances C,, C;, Cc1, C2), resulting in four state variables [T, T,, T.1, Tc2] per
state-space theory. The four state variables are represented in the following vector,

x(t) = ey
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The input vector u(t) is composed of the external temperature sources expressed by
the following equation:

THot
Tumh

u(t) = 2)

The equations are presented as the energy balance at the four nodes of the thermal
circuit in Figure 2 shown in the following equation:

aT; .
Ci?; - Zqin - Zqout; i=ea,cl,c2 (3)

The Usgeepeck VOltage used to calculate the current I of the electrical circuit is expressed
according to the following equation:

Xm

D‘m(Te - Ta)
R JFRL

Rm+RL

ul = =C(T.—T,), where C= 4)
The balance at node T,, inner hot face, including the energy accumulation term, is

given by the following equation:

dTe Tcl - Te Te B Ta

1
—t = - —ayT,I + =Ry I? 5
dt QC] Qm mte 2 m ( )

By solving for the derivative and substituting I, we obtain the first equation of state:

Ce

AT, 1 [Tq-T. T.—Ta 1

R - — amCT(Te — Tp) + =Ry C3(To — T,)?
I G, Ou Om a;,C e( e a)+ 3 mC ( e a) (6)
Similarly, the balance at node T;, internal cold face, is:
- -T
ﬂ%:TeQ Ta—Tancz_meal+%Rm12 (7)
m C.

By solving for the derivative of Equation (7) and substituting I expressed in
Equation (4), we obtain the second equation of state:

1
2

T, 1 [T.—-T, T,—Te»
—_ = — — o, CT, (T, — T,) +
dt Ca Qm QCZ " a( ¢ a)

Ry C3(T, — T,)* ®)

The balance at node T, external hot ceramic, depends on the inlet heat source Tr,,
as can be seen in the following equation:

chl _ THot Tcl — T Tcl

C = - - 9)
‘l dt RHeat1 Qa RHeat1
By solving for the derivative, we obtain the third equation of state:
chl _ i Te—Ta + Thot — Tar (10)

dt Ccl ch RHeutl

The balance at node T, external cold ceramic, depends on the ambient tempera-
ture Ty, as can be seen in the following equation:

chZ _ T, — Tc2 + TcZ — Tamb

C =
- dt QC2 RHeatZ

(11)
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And finally, by solving for the derivative, we obtain the fourth equation of state:

ar Ceo Qo Ryear

chZ o 1 Ty — Tc2 Tc2 — Tamb:| (12)

The complete system of nonlinear differential equations of the transient thermal and
electrical circuit that describe the dynamics of the TEG is expressed by Equations (13)—(16):

T, = é[Tle;TE - TfQ_mT” — anCT,(Te — Ta) + %RmCz(Te — Ta)Z] (13)
T, = cia [TEQ_mT” - T‘EQTQ —ayCTo(T, — Ta) + %Rmcz(Tg — Ta)z} (14)
o= (M~ )~ o™ o

This system has the form x = f(x,u) and is ready to be solved numerically using an
ordinary differential equation integrator (ODE) [24], to simulate the transient behavior of
the system under changes in Tt or Ty

2.3. Stationary Regime Analysis
The steady-state analysis will be studied in two steps: the establishment of the balance

equations, and the development of the Jacobian and the second member of the system
of equations.

2.3.1. Energy Balance Equations

In steady state, the partial derivatives with respect to time are zero, so Equations (13)—(16)
simplify considerably. It should be noted that in this case the resulting equations re-
main nonlinear.

To solve this nonlinear system using the Newton—-Raphson method, the linear system
to be solved in each iteration k is set up as shown in the following equation:

J (k) Xk 41 = by (17)

where by is:
b = J (k) xx — F(xk) (18)

To obtain greater numerical robustness, by searching for the diagonal domain, the
system of equations F(x) = [f1, fa, f3, f4/]" is defined by Equations (19)~(22).
Function 1, balance at T,:

T4 —T, T, — T, 1
fl(x)—{ a-T T.-T —zmeTe(Te—Ta)—f—ZRmcz(Te—Ta)z} 0 (19

ch Qcm

Function 2, balance at Tj:

. Te_Tu_Ta_TCZ_ _ 1 2 _ 2:|_
fo(x) = [ o s nCTo(T, = Ta) + 5 RuC*(Te = Tu) 0 (20)

Function 3, balance at T,:

falx) = ( Qe1 RHeat1
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Function 4, balance at T,;:

Ta - TcZ TCZ ) 1
X) = — — T,., =0 22
f4( ) < QC2 RHeatZ RHeatZ amb ( )

2.3.2. Solving Nonlinear Equations

To solve the system of nonlinear equations in steady state F(x) = 0 using the Newton—
Raphson method, it is necessary to calculate the Jacobian matrix J(x) and the second
member vector by of Equation (17). The state vector is x = [T¢, Ta, T;1, Teo] T,

The functions of the system F(x) = [fi,f2 f3, )T = 0 are expressed by
Equations (19)—(22).

The Jacobian matrix J(x) is defined as the matrix of first-order partial derivatives,

_ 9 .
where J;; = aT takes the form:

T. 9T, ol dla

_ T, T, T, T,
J(x) =158 54 SF 9f (23)

9. of, 9T, ala

ofy Ofy Ofs dfy

T, oT, 9T, o,

The elements of the matrix are given by Equations (24)—(39):

Ji1 = % = —&—i—amC(ZTe—Ta)—i—RmCz(Te—Ta) (24)
Ji2 = g% = Qi + awCT, + RuC* (T, — Ts) (25)
df1 1
— R 26
]13 aTcl ch ( )
f1
= =0 27
J14 T, (27)
=2 - o + tnCTa+ RuC¥(Te = T,) (28)
5] 1 1
Jop = TJTE =0, " 02 — auC(T, — 2T,) — RuC*(T. — Ty) (29)
df2
= =0 30
J23 9T (30)
a1
= = — 1
]24 aTcZ QCZ (3 )
_9fs 1
Ja1 = T, Oa (32)
0
J32 = % =0 (33)
3fs 1 1
]33 aTcl ch RHeatl ( )
df3
= =0 35
J34 T (35)
Jn = % _ 0 (36)
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dfa 1
]42 aTa QCZ ( )
_ 9fs _
Jaiz = Ty 0 (38)
s 1 1 (39)

]44 B aTcZ B _QCZ B RHeatZ

The Newton-Raphson iterative system is J(xg)xx,1 = bg, which is expressed by
Equation (17).
The vector of the second member is calculated as:

bk = ](xk)xk — F(xk); k= 1,2,3,4. (40)

The terms by and b, are as follows:

1

b = amCTe(Te = Ta) = 5RuC(Te = Ta)’ (41)
1
by = 0, CTy(T, — T,) — ERmCZ(Tg —T,)? (42)
And the terms b3 and b, take the following form
For f3(x) = (QL; — 5—“:]] - R?fm) + RTFZ‘;] = 0, the calculation of Jx — f3 results in:
Trot
by = — 43
> RHeatl ( )
and likewise, for fy(x) = (% - % - Rzﬁn) + % = 0 we obtain:
T,
by = ——amb 44
! RHeat2 ( )

Grouping all the components, we obtain the following expression which gives us the
second member of the system of equations in steady state:

by & CTe(Te — Ty) — ARwC(T, — T,)?
by by = amCTa(Te — Ty) — sRuCA(Te — Ty)?
be=1,.| = T (45)
3 R,IHeatl
__ _“amb
bs RHeat2 k

3. FT Methodology

The FT process was run on a Linux platform with an NVIDIA GeForce RTX 2070
SUPER GPU. Training times and inference times in later tables were all measured on
the same setup. To optimize memory usage and accelerate training, the open-source
Unsloth library [25] was used, applying its optimizations to the base model JanV1-4B [12].
According to its developers, this model is an FT of Qwen3-4B-Thinking, an architecture
belonging to the Qwen2 model family [26]. Training on 202 questions and answers (QA)
found in this work’s repository [27] over three epochs was highly efficient, completing in
just 263 s. Each data sample was structured using a chat template that included a powerful
system prompt, training the model to behave like an expert in thermoelectric materials and
to proactively clarify ambiguous concepts, such as the definition of the power coefficient.

Monitoring training loss across the three epochs confirmed the effectiveness of the FT
methodology. Starting with an initial loss of 2.38, the model showed the greatest learning
gain during the second epoch, where the loss decreased by 13.6%. This process continued
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steadily, with an additional 7.4% reduction in the third epoch, culminating in a final loss
value of 1.91. This reduction represents a total decrease of 19.9% and indicates robust and
progressive learning. Furthermore, the gradient norm remained controlled throughout
the process, confirming the stability of the convergence and the suitability of the selected
hyperparameters. This indicates that the model successfully assimilated the new data.

Using the LoRA technique, 132,120,576 parameters were tuned, representing only
3.18% of the total architecture (4.15 x 10° parameters). The model was loaded in a 4-bit
format to drastically minimize its memory footprint. A maximum context window of
2048 tokens was configured, striking a balance between the ability to process complex
information and computational limitations. A conservative learning rate of 2 x 107® was
applied, with a linear decline throughout training, to gradually integrate new knowledge
without compromising the model’s existing capabilities.

The workflow concluded with the merging of the adapters and subsequent conver-
sion to the Georgi Gerganov Universal Format (GGUF) [28], leaving it ready for efficient
inference in local environments.

The following diagram illustrates the complete cycle for specializing a JanV1-4B
general-purpose LLM into a TEG domain expert, using an efficient and reproducible work-
flow. This new model is called the JanV1-4B-expert-TEG model. The process begins with
the base JanV1-4B model and culminates in its specialization in the field of thermoelectricity,
TEG. It is divided into four key phases, summarized in Figure 3.

Phase 1: Preparation and FT
(The specialist’s workshop)

New Expert Dataset Base Model
(dataset_v4_improved) | (janhg/lan-v1-4B)
QLoRAFT

Phase 3: Deployment and Serving

(Running train.py) (Go-Live)

A small adapter is trained without
modifying the base model Model File
_ (Configuration Recipe)

LoRA Adapter
(JanV1-thermo-adapter)

The adapter is baked into a
copy of the base model

Phase 2: Consolidation and Optimization l
(The production furnace) Create Model in Ollama
(ollama create)
>
The GGUF model is registered
Merging for easy use
(Running merge.py) l

The adapter is baked into a Deployed Expert Model

copy of the base model (accesible via ollama run)
Merged Expert Model Phase 4: Usage and Evaluation
(Hugging Face Format) (Advanced quality control) 4

] v
GGUF Conversion and Advanced Evaluation Qualitative Evaluation
Quantization (LLM-as-a-Judge) (Human expert review)

(Using llama.cpp)
Using state-of-the-art models Is the model’s output
The model is optimized for (e.g., GPT-4, Gemini 1.5 pro) to technically accurste,
efficient CPU/GPU inference score the expert model’s coherent, and helpful?
I' responses for quality and l

relevance

GGUF Model File
(janv-tegs-expert.gguf)

Correct results?

Yes

No

| FinatJanV1-4B-expert-TEG |

Figure 3. Flowchart to obtain the expert model developed JanV1-4B-expert-TEG.
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Phase 1: Preparation and FT (the TEG specialist’s workshop).

The starting point consists of two essential components: a pre-trained JanV1-4B base
model and a curated expert dataset with domain-specific knowledge—in this case, 202 QA
on TEG [27].

Instead of retraining the entire model, which is computationally prohibitive, we
applied the QLoRA technique. A Python 3.10 script called train.py [27] was written, which
freezes the base 4B model and trains only a small set of new weights, called the LoRA
adapter. This adapter, representing only a tiny fraction of the total model size (3.18%),
learns the new skills and knowledge of the dataset. The result of this phase is not a new
model, but rather this lightweight and portable adapter.

Phase 2: Consolidation and Optimization.

Once we have created a new adapter, we need to integrate it to create a standalone
efficient model. This process has two steps:

1.  Merging: A script, merge.py [27], was created to combine the weights of the original
JanV1-4B base model with those of the LoRA adapter. The result is a complete merged
expert model in the Hugging Face standard format [29]. This yields a single model
containing both the general knowledge and the new specialization.

2. GGUF Conversion and Quantization: To make the model practical and fast for infer-
ence in real-world use, we converted it to GGUF using the tools from the open-source
project llama.cpp [28]. During this step, 4-bit quantization was also applied, a process
that drastically reduces file size and RAM usage with minimal loss of precision. The
result is a single file with the .gguf extension, optimized for efficient execution on
both CPUs and GPUs.

Phase 3: Deployment and Serving (Go-Live).

With the optimized model in GGUF, the next step is to make it accessible. For deploy-
ing and running the LLM in a local environment, the open-source framework Ollama [30]
was used, which simplifies LLM management and inference on consumer hardware. Using
a file called a modelfile [27], which acts as a configuration recipe, we tell Ollama where
to find the GGUF file and how the model should behave—for example, by providing its
system prompt.

The ollama create command packages the result of this phase and registers the
model on the local system. From this point on, the expert model is deployed and ready
to be invoked with a simple command called ollama run and the expert model name,
JanV1-expert-TEG.

Phase 4: Usage and Evaluation (Advanced quality control).

Next, it is crucial to verify the performance of the new JanV1-expert-TEG model
through a qualitative and an advanced evaluation.

1. Qualitative evaluation: This involves interacting directly with the model, just as a
human expert would. We ask complex questions and evaluate the coherence, technical
accuracy, and style of its responses. It is a subjective but fundamental test.

2. Advanced evaluation: To ensure the highest quality of the expert model, a rigorous
dual evaluation process is implemented that surpasses traditional metrics. First, a
qualitative evaluation is performed, where human subject matter experts review
the model’s responses to validate their technical accuracy, consistency, and practical
utility in real-world scenarios. Next, a cutting-edge technique known as LLM-as-
a-Judge [31,32] is applied. In this step, state-of-the-art language models GPT-4 [31]
and Gemini 1.5 Pro [32] are used to act as impartial evaluators, scoring the expert
model’s responses based on their quality, relevance, and correctness. This combined
approach provides a much deeper and more nuanced assessment than traditional
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automated metrics [33], as it is able to analyze the reasoning and semantic quality of
the responses, not just word matching.

If, at the end of phase 4 in Figure 3, the analysis result is not acceptable, the dataset
can be expanded by returning to phase 1. In this way, the results of this evaluation phase
feed into a continuous improvement cycle, providing input on how to refine the dataset or
how to adjust the hyperparameters for the next FT iteration, if necessary. In our case, the
dataset was improved with 12 iterations.

This methodology for obtaining the FT explained for the LLM JanV1-4B-expert-
TEG represented in the diagram of Figure 3 was also applied in the LLM Qwen3-4B-
thinking-2507-TEG.

These two LLMs were refined because they had the best scores in the published generalist
benchmarks, as will be justified later in Section 5.2 TEG FT models vs. generalist LLMs.

4. Dataset Definition

To construct the training dataset for the FT LLM, information on the progress and
applications of TEG [34] was used, among other things. Concepts and laws related to TEG
were classified, and reviews of the current state of TEG were taken into account [8,19,35].
Additionally, a QA dataset related to the model developed in Section 2 was created.

To explain the criteria for choosing the content of the dataset, a flowchart has been
made, see Figure 4, which is explained below.

Total dataset
100%| 202 entries

Pillar 1: Knowledge injection Pillar 2: Behavior shaping

v v

Domain-Specific data Instruction-Tuning data
48.5% 51.5%

A 4 \ 4

Pure domain Calculation General Purpose
Technical concepts and facts Applied numerical calculations General knowledge and safety
46.0% 2.5% 4.0%

Potential overlap

Fuzzy boundary
\ 4
Skill-based
Response skills and formatting
47.5%

Figure 4. Dataset flowchart.

This diagram visualizes the composition of the dataset used for the model’s technical
testing and allows for the classification of QA elements categorized into subsets. The
objective of this dataset is not only to teach the model new information but also to shape
its behavior. The diagram shows a strategic division into two main branches: knowledge
injection and behavior shaping.

Within the knowledge injection branch, there is a subset called Domain-Specific data
that comprises 48.5% of the dataset. Its purpose is to make the model an expert in a specific
field—in this case, thermoelectricity. It is subdivided into:
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(@) Pure Domain (46.0%): The largest portion of the dataset focuses on pure factual
knowledge, theoretical concepts, and terminology. This is the knowledge from scien-
tific articles.

(b) Calculation (2.5%): A small but critical part dedicated to teaching the model how to
apply mathematical formulas from the domain to solve practical problems.

Within the behavior-shaping branch, there is a subset called Instruction-Tuning data
that comprises 51.5% of the dataset. This data is not about teaching what to say, but how to
say it. It shapes the model’s behavior, response style, and safety. It is divided into:

(a) Skill-based (47.5%): A very significant portion, now the largest in the dataset, is
dedicated to teaching the model how to structure complex responses—such as those
involving equations—consistently and clearly, regardless of the specific instruction.
This improves the quality and usability of the model’s responses.

(b) General Purpose (4.0%): This acts as a safeguard against catastrophic forgetting and
overspecialization. It includes general knowledge and safety guidelines to ensure the
model remains versatile and does not lose its core competencies after being tailored to
such a specific topic.

Logically, some categories can be fuzzy, belonging to different subsets depending
on the case. This is a common challenge in data classification. Although the diagram in
Figure 4 uses a closed classification implying a single main category, the reality is often
more complex.

For example, a classified dataset entry referenced as applied numerical calculations
could also have been referenced as a response skill such as presenting the calculation and
the result.

To represent this overlap in the flowchart, a non-directional dashed line has been
added between the Calculation and Skill-based nodes. This visually indicates a strong
conceptual link and potential overlap between these two subsets, even though they are
formally separated in the dataset classification.

The composition and strategy of the 202 QA dataset used in the FT process are
detailed in Table 2. This dataset was meticulously designed to address not only the
“what”—knowledge—but also the “how”—responsiveness—a crucial aspect for developing
an expert and reliable LLM.

Table 2. Classification and quantification of the 202 QA of the dataset.

Classification Quantity (%) Main Objective and Justification

To inject factual knowledge, theoretical knowledge and

Pure domain %3 46.0 terminology from the field of thermoelectricity.

To teach the model to apply domain-specific

Calculation 5 25 mathematical formulas to solve practical problems.

To teach a behavior. How to structure complex
Skill-based 96 47.5 responses consistently to a variety of instructions,
especially equations.

To mitigate catastrophic forgetting, maintain the overall
General Purpose 8 4.0 versatility of the model, and ensure that it does not
become over-specialized.

202 100.0

As a strategy for cleaning, controlling overlap, and ensuring dataset integrity, the
classification was based on the primary intent of the QA. One hundred percent of the
202 QA pairs were manually reviewed to eliminate conceptual duplicates such as duplicate
questions and answers. Ambiguous entries were also classified in this way, ensuring that
these QAs aligned with the computational and skills-based subsets.
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The generation of the dataset is based on two fundamental pillars that coincide with
the branches mentioned above: knowledge injection of the TEG domain and behavior
shaping of the dataset.

Pillar 1: Knowledge injection of the TEG domain.

This pillar introduces 93 QA, representing 48.5% of the total QA. The main objec-
tive of this section is to build a solid and comprehensive knowledge base in the field of
thermoelectricity.

This pillar forms the theoretical basis of the model. It covers fundamental definitions
such as the Seebeck effect and the merit factor ZT [36], properties of key materials used
in TEGs (PbTe, SnSe, skutterudites) [37-39], various applications (sensors, automotive,
radioisotope thermoelectric generators, etc.), and essential physical principles such as the
Wiedemann—Franz Law [40]. The extensive QA in this section ensures that the model
possesses the vocabulary and conceptual framework of an expert.

The applied calculations are presented through 5 QA. Although numerically small,
this subset is functionally critical. It teaches the model to perform direct calculations, such
as determining thermal conductance or internal resistance from geometric and material
parameters, validating its ability to apply formulas.

Pillar 2: Behavior shaping of the dataset.

This pillar introduces 104 QA, representing 51.5% of the total QA. This pillar, the
largest in the dataset, focuses on teaching the model to act like an engineer, structuring
responses, formulating models, and recognizing the limits of its knowledge.

The skills and format are developed through 96 QAs. This is the core of the Instruction-
Tuning data. The four-degree-of-freedom lumped-parameter mathematical models devel-
oped in Section 2 are included, along with dozens of variations from the Instruction-Tuning
data—formulate, derive, analyze, give me the equations, translate this netlist, etc. This
repetition with variation technique is fundamental for the model to learn to recognize the
underlying intent of a question, regardless of how it is phrased, and to always respond
with a consistent and well-formatted structure—bold headings, lists, LaTeX formatting for
equations, etc. It is direct training for robustness and reliability.

General knowledge and safety are addressed through 8 QA. These inputs act as safety
railings or regulators. Including general knowledge questions—such as who painted the
Mona Lisa?—helps mitigate catastrophic forgetting, preventing the model from overspe-
cializing to the point of losing its general capabilities. Safety examples are also included to
teach the model to identify and reject domain-insensitive questions—such as calculate the
efficiency of a potato—which is an essential skill for a reliable Al assistant.

Of these 104 QA, 20 were established to clarify ambiguous concepts, specifically
differentiating the thermoelectric power coefficient—a concept specific to thermoelectric
generators—from the power factor of alternating current circuits—a general electrical
concept. This deliberate repetition of the same question posed in different ways inscribes a
conceptual distinction in the LLM that is often confusing, teaching the model to be precise
and to actively correct common misunderstandings.

Furthermore, continuous expansion and improvement are implemented, as the dataset
is designed to be a living resource that can be extended. Areas such as numerical calcu-
lations and complex design reasoning can be easily expanded. For example, by adding
problems that require the model to deduce properties from experimental results or to pro-
pose TEG designs for specific scenarios. For instance, the specialized LLM could be tasked
with designing a TEG for an industrial furnace at 800 K, justifying the choice of materials.

In conclusion, this dataset of 202 QA is a robust and strategically balanced dataset.
Its dual approach, combining a deep knowledge base with rigorous training in response
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format and structure, is key to achieving an expert model not only in terminology but also
in the mathematical modeling of the TEGs.

The guiding principle of this work is the primacy of quality over quantity in the train-
ing dataset. This is not only a methodological choice but also a thesis validated in the FT
literature of LLMs. Foundational studies such as LIMA (Less Is More for Alignment) [18]
have empirically demonstrated that, for instruction-tuning, a small but highly curated
dataset with maximum instructional coherence is significantly more effective at aligning
the model’s behavior and reasoning skills than a massive dataset containing noise or redun-
dancy, mitigating hallucinations and catastrophic forgetting. Therefore, the size of 202 QA
pairs was intentionally selected to maximize information density and instructional coher-
ence of the TEG domain, ensuring efficient, high-fidelity specialization without incurring
the high computational costs and overfitting risks associated with an unnecessary volume.

5. Results and Discussion

This section examines the inference of the two refined models developed in this work:
JanV1-4B-expert-TEG and Qwen3-4B-thinking-2507-TEG. It also includes a comparative
analysis of these two models against five other unrefined baseline models.

5.1. Analysis by Level of Difficulty

To validate the capabilities of the LLM JanV1-4B-expert-TEG that was trained with
a dataset of 202 QA (see Figure 3), a structured questionnaire of 16 questions [27] was
designed, which is shown in Table 3. The performance of the LLM was evaluated as
excellent, correct with difficulties, and incorrect.

Table 3. Summary and evaluation of the responses of LLM JanV1-4B-expert-TEG.

Question Main Topic Level Evaluation
1 Equation of the node on the outside of the hot face, T 1 excellent
2 Equation of the node inside the cold face, T, 1 excellent
3 Equation of the inner surface node of the internal hot face with Peltier and Joule effects, T, 2 excellent
4 Equations of the two internal junctions T, and T, 2 excellent
5 Equations at the 4 nodes T1 , Tep, T; and T, 2 correct with difficulties
6 Cold side equations of the system T, 2 excellent
7 Open electrical circuit scenario I =0 2 excellent
8 Interpretation of the term storage 1 excellent
9 State variable format: solving the derivate 1 excellent
10 Combined conceptual balance of internal nodes 3 excellent
11 Steady-state equation at a node 1 excellent
12 TEG leg geometry: trade-off 3 correct with difficulties
13 Material selection and merit figure ZT 4 excellent
14 Geometry and contact strength 4 excellent
15 Temperature-dependent properties 4 excellent
16 Interpretation of simulation results 4 excellent

To perform this inference, the trained model must be deployed in the Ollama environ-
ment [30]. This is performed by executing the command ollama run JanV1-4B-expert-TEG.
As a result of this execution, the Python command prompt appears, where questions are
asked and the corresponding answers are obtained.

The 16 questions were classified into four levels of difficulty and cognitive domain to
allow for granular analysis of the model’s performance:

e Level 1: Formulation. Questions that require the direct formulation of heat balance
equations for a single node. Questions 1, 2, 8, 9 and 11.

e Level 2: Application of models. Questions that involve combining multiple heat flows,
handling thermoelectric interactions, or simplifying equations under new conditions.
Questions 3 to 7.
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e Level 3: Qualitative and Design reasoning. Questions that require a conceptual
analysis of design trade-offs, without complex numerical calculations. Questions
10 and 12.

e  Level 4-5: Quantitative and Critical analysis. Questions that require numerical calcu-
lations, interpretation of tabulated data, and decision-making based on multidimen-
sional analysis. Questions 13 to 16.

5.1.1. Level 1: Formulation

LLM JanV1-4B-expert-TEG answered all questions at this level flawlessly and without
hesitation. It demonstrated a solid understanding of heat balance principles and was able to
formulate the differential equations correctly. For example, for question 2 [27] concerning
the heat power balance of the dissipation node T, it generated the following answer,
which is correct:

C

chZ _ Tamb — TcZ + T, — Tc2

= 46
- dt RHeat2 QCZ ( )

5.1.2. Level 2: Application of Models

QAs were generated a priori by the authors based on the model equations, ensuring
they test distinct cognitive skills. The complete answers can be found in the Zenodo
repository [27].

Performance at this level was mostly excellent. The model correctly handled the
inclusion of Joule and Peltier thermoelectric effects, and the simplification of equations in
specific scenarios—open electrical circuit, I = 0.

The only difficulty arose in question 5, which requested the complete system of
equations for all four nodes. The model initially struggled to structure the response,
although the final equation for the most complex node, T, was correct.

For question 4, it correctly provided the two internal equations. For example, for the
hot junction equation T,, the following correct expression was obtained:

aT, T,—-T, Tq-T.

1
e _— — —
Ce ar Qm + ch + 2 AJoule — qPe (47)

5.1.3. Level 3: Qualitative and Design Reasoning

In this category, LLM JanV1-4B-expert-TEG demonstrated a remarkable capacity for
abstract reasoning. In question 12, regarding the geometry of the TEG’s legs, the model
was able to self-correct and arrived at the correct conclusion about the fundamental trade-
off between electrical resistance and thermal conductance. This indicates second-order
reasoning, where the LLM not only applies formulas but also understands the underlying
design principles.

5.1.4. Level 4: Quantitative and Critical Analysis

This level of assessment was designed to measure the model’s more advanced cogni-
tive abilities: quantitative analysis of numerical data, critical reasoning, and engineering
decision-making. To this end, a numerical experiment was designed focusing on ques-
tion 16, which simulated a scenario involving the analysis of optimization results for the
parameters of the equivalent circuit in steady state.

The objective of the simulation was to identify the optimal parameters of the TEG
model by comparing four different optimization methods: the canonical genetic algorithm
(GA) [41], a variant of GA with niche formation for real spaces (niching) that seeks to
explore multiple local optima (NGA) [42], the differential evolution (DE) algorithm [43],
and, finally, the simplicial homology global optimization (SHGO) method [44], available in
the SciPy 1.15.2 library [24].
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LLM JanV1-4B-expert-TEG was provided with the results of this process in the form of
Tables 4 and 5 and assigned the role of a TEG expert data analyst. Their task was to analyze
the final error, simulation accuracy, and runtime of each algorithm to ultimately determine
the best option and justify their choice based on a practical trade-off. The performance
results and parameters identified for each algorithm are summarized in Table 4. Table 5
presents a comparison of the runtime, final objective function error, and optimal parameter
values found by each of the four methods. Similar parameter estimation tasks have been
addressed with metaheuristics [45,46], validating our Level 4 classification as representative
of real TEG modeling research.

Table 4. Evaluation of parameters with different optimization algorithms.

. Time . Xin Ry, Qm Ryeatz Qc Ryeant
Algorithm © Final Error (V/K) ) KIW) (K/W) KIW) KIW)
GA 1128.76 0.00291 0.0171 2.4457 20.8545 0.0759 0.2379 0.0890
NGA 1235.58 0.00276 0.0151 2.0669 23.0098 0.0833 0.0941 0.0988
DE 108.90 0.00288 0.0155 1.9940 24.0509 0.0875 0.4778 0.1035
SHGO 6.67 0.56488 0.3496 5.0000 15.0500 0.0111 1.0000 0.0133

Table 5. Comparison between experimental and simulated temperatures.

Thor (°C) Data Source T4 (°O) T, (°O)
Experimental 1.079 19.076
GA 1.078 19.092
0.0 NGA 1.079 19.075
DE 1.078 19.080
SHGO 1.081 19.088
Experimental 86.030 23.288
GA 85.994 23.279
90.0 NGA 86.038 23.317
DE 86.033 23.291
SHGO 86.170 23.216

Based on the reference data used for the TEG Peltier cell model ET-031-10-20 [11], the
final steady-state model of Equation (17) was solved.
The summarized results are as follows:

e  Actual target values: «;,= 0.0123 V/K, R;; = 1.4100 Q), Q;, = 21.7391 K/W, Rdisip =
0.0850, Q;1 = Q2 = 0.1333 K/W, y Rpep11 = 0.1000 K/W.

To validate the accuracy of the identified parameters, the temperatures simulated by
each optimized model were compared with the reference values obtained in the simulation.
Table 5 presents this comparison for the two extreme operating points of the studied
range, 0.0 and 90.0 °C, corresponding to the minimum and maximum temperatures of the
heat source, Tj,;. In other words, a comparison is presented between the experimental
and simulated temperatures using the parameters obtained with the four optimization
algorithms at points T, and Ty, at the extremes of the operating range.

The LLM demonstrated exceptional competence in this task. Not only did it correctly
and unequivocally identify the worst-performing algorithm, SHGO, but it also addressed
the apparent conflict between the metrics in the two tables. It considered that, although
one algorithm had a theoretically lower final error, the DE algorithm showed excellent
practical accuracy in simulating real-world temperatures. It pragmatically and with good
justification concluded that DE was the better option, due to its excellent balance between
high accuracy and significantly higher speed.

This result is particularly relevant, as it demonstrates that the specialized LLM is
not limited to retrieving information, but is capable of performing synthesis and critical
analysis equivalent to that of a human expert in a realistic engineering scenario.
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Therefore, small LLMs can reason, since although this model only has 4B, it demon-
strated an ability for logical reasoning, comparison and synthesis when given the appropri-
ate framework to work in.

In other questions at this level, the performance was outstanding. The LLM handled
unit conversions, ZT figure of merit calculations, and temperature-dependent property
analyses with ease.

The model occasionally showed initial difficulties when faced with questions requiring
the synthesis of a complete system of equations, such as question 5 of the questionnaire [27],
which requested the complete system of equations for all four nodes. However, parts of
the problem were eventually solved correctly. This suggests that structuring prompts for
highly complex problems remains crucial.

It is worth highlighting that, although the validation focuses on the 4-DOF model
for formulating equations, the pure domain category of the dataset provides fundamental
knowledge, including the ZT merit factor and its influence on geometry. This has allowed
the model developed in this work to generate answers regarding material selection at other
temperatures and the geometric optimization of parameters.

Table 3 summarizes the 16 questions of the TEG expert questionnaire and the evalu-
ation level achieved in the inference of the LLM trained with FT. The evaluation process
is summarized in the flowchart in Figure 5. Besides, an Appendix A has been added
which includes two examples of skill-based prompt questions and three examples of pure
domain questions and answers. The overall accuracy analysis is 94%. In this way, the LLM
JanV1-4B-expert-TEG showed high performance and domain-specific reasoning.

Start:
Framing 16 questions of increasing complexity

¥

Response generation
by the fine-tuned LLM

Response analysis by level

Question classification
by cognitive domain

Level 1-2: Formulation Level 3: Qualitative Level 4: Quantitative
and Application of models and Design reasoning and Critical analysis
(8 questions) (3 questions) (5 questions)

Evaluation: 100% correct

Evaluation: 100% correct
(5/5)

Evaluation: 67% correct

(8/8) (2/3 with initial difficulties)

\ Global analysis: /

strengths and weaknesses

|

Conclusion:
- Overall accuracy: 94% (15/16)
-The LLM shows high performance and domain-specific reasoning

Figure 5. Flowchart of the validation process for the LLM JanV1-4B-expert-TEG. The LLM demon-
strates high performance and domain-specific reasoning.
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5.2. TEG FT Models vs. Generalist LLMs

This section aims to compare the specialized FT models developed in this
work—]JanV1-4B-expert-TEG and Qwen3-4B-thinking-2507-TEG—with other generalist
models between 4B and 8B. More specifically, the Mistral-7B [47], Llama3-8B [48], Qwen3-
4B-thinking-2507 [49], Qwen2-7B [50], and Janv1-4B [12] models are compared against a set
of 42 specialized thermoelectricity questions developed in this work called the Specialized
Thermoelectricity Benchmark [27].

The analysis of the inference of the previous models on 42 questions about TEG is
shown in Figure 6. The clear superiority of the JanV1-expert-TEG model (81%) compared
to its base version, Janv1-4B (31%), from which it is derived, is evident. The refinement
was not an incremental improvement, but rather a qualitative leap that transformed a base
model with low capacity for this domain in TEG into a highly competent and reliable one.
This demonstrates that, for specialized domains, technical sensing is the most effective
strategy for achieving expert performance.

Model performance on TEG benchmark

100

& specialized high-potential

80 81.0 82.9

70
60
50
40
30
20

76.2

incompetence levels

30.9

Correct answers (%)

(%

Language model

Figure 6. Comparative analysis of the two specialized FT models, JanV1-4B-expert-TEG and Qwen3-
4B-thinking-2507-TEG, against five other generalist base models.

The Qwen3-4B-Thinking-2507 model (76.2%) is the most interesting case. Despite
being a base model without specific tuning, its performance is exceptionally high, almost
on a par with the FT JanV1-4B-expert-TEG model. This suggests that it possesses a pre-
existing architecture and training with a logical and mathematical reasoning capacity far
superior to the average, allowing it to learn and correctly apply the formulas it deduces
from the context.

This is consistent when comparing the performance of this model in five very de-
manding benchmarks. GPQA [51], with graduate-level science questions requiring deep
reasoning, AIME25 [52], with a well-known, highly challenging mathematics exam, Live-
CodeBench v6 [53], consisting of a code generation and problem-solving test, Arena-Hard
v2 [54], which is based on a set of challenging questions where the quality of the model’s
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response is assessed, and finally BFCL-v3 [55], another benchmark designed to assess logi-
cal reasoning and comprehension. Table 6 compares the metrics of the five benchmarks [49].

Table 6. Performance comparison of Qwen3-4B models [49].

Qwen3-4B- Qwen3-4B- Qwen3-4B- Qwen3-4B-Non-
Benchmark Thinking-2507 Thinking Instruct-2507 Thinking
GPQA [51] 65.8 55.9 62.0 41.7
AIME25 [52] 81.3 65.6 474 19.1
LiveCodeBench v6 [53] 55.2 484 35.1 26.4
Arena-Hard v2 [54] 34.9 13.7 434 9.5
BFCL-v3 [55] 71.2 65.9 61.9 57.6

In contrast, the standard base models JanV1-4B (30.9%) and Qwen2-7B (23.8%) repre-
sent the typical performance of a base model (see Figure 6). They have some conceptual
knowledge—they know what the Peltier effect is or what a semiconductor is doped for—but
they fail in applying the formulas.

The most popular generalist models, such as Mistral-7B (7.1%) and Llama3-8B (4.8%),
perform very poorly. This result is critical because it demonstrates that a larger model size,
7B and 8B in this case, does not guarantee greater competence in a specialized technical
domain like TEG. Lacking specific knowledge, these models appeal to hallucination [56],
inventing formulas and concepts, which makes them not only useless but dangerously
misleading for this task.

Figure 6 perfectly illustrates three levels of competence: the specialized level—achieved
with FT in the two models refined in this work, JanV1-4B-expert-TEG and Qwen3-4B-
Thinking-2507-TEG—the high-potential level —Qwen3-4B-Thinking-2507, generalist model
with strong reasoning—and the incompetence level—generalist models that are simply un-
realistic, JanV1-4B, Quen2-7B, Mistral-7B and Llama3-8B. This is very powerful quantitative
evidence of the value of specific benchmarks and the impact of FT.

The analysis of the results reveals the following:

1.  General knowledge is insufficient, as very powerful general-purpose models like
Llama3-8B and Mistral-7B—which have almost twice as many parameters as our
JanV1-4B-expert-TEG model—fail spectacularly with a success rate of less than 8%,
demonstrating that they lack the necessary knowledge in the specialized TEG domain.
This demonstrates the need for the FT. The execution times in the two cases are less
than 22 and 24 s per answer, respectively (see Table 7).

Table 7. Comparative summary of LLM performance and execution times in the TEG benchmark [27].

Hit Rate Average Time
Model Success Errors (%) (s/Answer)
Base model without FT
Llama3-8B 2 40 4.80 22
Mistral-7B 3 39 7.10 24
JanV1-4B 13 29 30.95 260
Qwen3-4B-Thinking-2507 32 10 76.20 300
Models with FT
JanV1-4B-expert-TEG 34 8 81.00 231
Qwen3-4B-Thinking-2507-TEG 34 7 82.90 486

2. The Qwen3-4B-Thinking-2507 model stands out from other base models, with an im-
pressive 76.2% accuracy rate. This suggests that its original training already included a
significant amount of scientific and technical data, giving it a huge starting advantage.
The drawback is its long run time, averaging 300 s per answer (see Table 7).

3. The FT we apply in this work represents a leap towards excellence:
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O The JanV1-4B-expert-TEG model improved from a low base 30.95% to 81.0%, an
increase of 50 percentage points, a massive leap that demonstrates the quality of the
dataset used.

O  The Qwen3-4B-Thinking-2507-TEG model improved upon an already very strong
foundation of 76.2%, reaching 82.9%, an increase of 6.7 percentage points. Although
the leap is smaller, it is significant, as it refines and specializes existing knowledge,
correcting errors and adding nuances.

4.  The speed dilemma is a fundamental factor to be analyzed. The speed comparison
between the two best FT models, which are the ones trained in this work, remains a
key point:

O  The JanV1-expert-TEG model offers the best ratio between speed and accuracy, being
fast (231 s/response) and very accurate (81.0%).

O  The Qwen3-4B-Thinking-2507-TEG model is the most accurate (82.9%), but the time
cost is high, at 486 s per answer. This is double the answer time of the previous model.

O  Therefore, for this reason, JanV1-4B-expert-TEG achieved a better expert-level compe-
tence in the complex domain of TEGs.

Table 8 [12] provides an explanation consistent with the results we saw in our own
tests, adding 42 TEG-specific questions to our model.

Table 8. Comparison of performance in general benchmarks of reasoning and creativity [12].

Benchmark JanV1-4B Qwen3-4B- GPT-OSS-20B GPT-OSS-20B
enchma (base LLM) Thinking (High) (Low)
EQBench [57] 83.61 82.61 78.35 78.35
CreativeWriting [58] 72.08 65.74 30.23 26.38
IFBench [59] 39.10 48.06 60.00 54.03

Based on the data shown in Figure 6 and Table 8, the following conclusions can
be drawn:

A specific benchmark for TEG is necessary. Table 8 [12] shows that the performance of
the JanV1-4B (base LLM) model in the three benchmarks does not guarantee success in a
specialized TEG technical domain. According to Figure 6, the JanV1-4B model’s response to
the specific TEG benchmark shows an accuracy of 30.9%, while the corresponding FT model
achieves an accuracy of 81%. The acceptable scores in those three general benchmarks
in Table 7 for the JanV1-4B (base LLM) model drop considerably in our TEG benchmark
because they lack knowledge in this domain before the FT. This underscores the need for
the TEG benchmark that we have created.

The accuracy analysis of JanV1-4B-expert-TEG is consistent with the data in Table 8,
which shows that JanV1-4B (Base LLM) is the best performer in EQBench, scoring 83.61%
in reasoning. This perfectly aligns with the success of our JanV1-4B-expert-TEG model
in calculation. We taught it the concepts and formulas—the rules of the game—and its
strong reasoning skills allowed it to apply them, solve for variables, and arrive at the
correct answer with an 81% accuracy. Its ability to self-correct is a clear indication of
robust reasoning.

Table 8 shows that JanV1-4B (Base LLM)’s weakness lies in the IFBench (Instruction
Following Benchmark). This partially explains its errors in the JanV1-4B-expert-TEG
model. For example, its most notable flaw was the inconsistency in the sign of the Seebeck
coefficient in some responses. It may have been taught the concept correctly, but its
weakness in following instructions meant it did not consistently apply that rule to some
specific calculation problems. The isolated numerical errors could also be interpreted as a
failure to follow the precise mathematical instruction to the end.
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The analysis of the Qwen3-4B-Thinking-2507 model in Table 6 shows good results.
Furthermore, Figure 6 positions it as a very capable model, closely following the JanV1-4B-
expert-TEG model in reasoning and creativity. This explains why, even without specific FT,
it achieved such a high score (76.2%) in our calculation test. Step-by-step reasoning is key,
since for problems that cannot be solved directly, a model’s ability to generate an internal
chain of reasoning is fundamental to arriving at the correct answer.

The methodology employed is inherently generalizable to any technical domain that
can be coded in high-quality instruction/response pairs. We emphasize that the Skill-Based
component of our dataset not only injects knowledge but also deliberately trains the LLM
in structured reasoning skills, such as manipulating and solving systems of equations
and handling abstract mathematical models in general. This demonstrates its potential
and direct applicability to address more complex or higher-order models in the field of
thermoelectric engineering.

5.3. Experimental Design of the TEG and LLM Strategies

This section details the practical application of the LLM JanV1-4B-expert-TEG to im-
prove the experimental design of a TEG. Starting from an initial design (see Figure 7), it
demonstrates how this model, trained with QLoRA and a dataset specialized in TEGs, tran-
scends mere information retrieval to offer expert reasoning, guiding the final TEG design.

Figure 7. (a) Experimental design of the TEG and measuring devices. (b) Arrangement of the
10 Peltier cells.

The main characteristics of the experimental model are the following:

Heat source power: 2000 W

Hot air flow: axial fan with temperature-adjustable heat source.

Peltier cell dimensions: 30 x 30 x 3.9 mm

Aluminum thermal paste (k =4 W/mK)

Ambient temperature 23 °C, relative humidity 45%, atmospheric pressure 984 mm Hg,

maximum electrical voltage obtained 8.0 V.

5.3.1. Level 3: Qualitative and Design Reasoning Experimental

Figure 7a shows the TEG setup. A heat flow enters the system from the left, with an
inlet temperature of Ty, j,. After passing through the upper heat sink, this flow exits
from the right at a lower temperature Tro¢— oyt

The core of the TEG consists of 10 Peltier cells connected in series located between
two heat sinks (see Figure 7b). The upper heat sink is in direct contact with the heat flow,
while the lower heat sink is immersed in a container with ice, whose temperature Tj, is
kept stable close to 0 °C.

To monitor the thermal profile, four thermocouples are used in contact with the
ceramics of the cells:
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e  Two are located near the hot flow inlet T, _;;, in the upper ceramic of the Peltier cell
and T.,_;, in the lower ceramic.

e Two are located near the outlet T;;_,,; on the upper ceramic and Ty_y,¢ on the
lower ceramic.

The results of these measurements are presented in the temperature graph shown in
Figure 8. Table 9 shows the magnitudes and physical properties of the TEG model. The
temperature near the inlet on the lower ceramic coincides with the inlet temperature, and
that is why the red curve cannot be observed on Figure 8.

Temperature Measurements vs. Time
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Figure 8. Temperature profile on the upper and lower faces at the Peltier cell inlet and outlet,
temperatures at the inlet and outlet of the upper heat sink, and ice temperature of the lower heat sink.

Table 9. Magnitudes and physical properties of the TEG model.

Symbol Name Unit
Teoo—in Temperature near the inlet on the lower ceramic °C
Teo—out Temperature near the outlet on the lower ceramic °C
Te1—in Temperature near the inlet on the upper ceramic °C
Te1—out Temperature near the outlet on the upper ceramic °C
THot—in inlet temperature °C

THot—out outlet temperature °C

Tice ice temperature °C

5.3.2. Analysis of Results and Recommendations from the LLM
The experimental results reveal a key discrepancy (see Figure 8):

e  The temperatures on the cold lower face of the cells are practically identical at the inlet
and outlet, Too_j; = Teo_out

e  However, the temperatures on the hot upper face show a significant temperature gra-
dient, Teq i > Te1—out » Which is undesirable for the optimal operation of the generator.

Based on these results, the LLM was consulted about two scenarios:

e  Scenario 1: Thermal management strategies to correct the observed non-uniform flow.
e  Scenario 2: Limitations of electrical optimization against fixed thermal gradients.

The full results of the LLM are available in the Zenodo repository [27].

The most noteworthy aspects of its answer are summarized below.

Scenario 1: Thermal solutions to the gradient.

The LLM demonstrated a deep understanding of the problem, identifying the non-
uniform gradient on the hot side as the main challenge. It proposed five specific strategies,
explaining their benefits, low cost, and ease of implementation. Specifically, the LLM
proposed adding the following elements:
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Side thermal diffusers: High conductivity plates over the inlet cells to redistribute heat.
Vertical thermal bridges: Conductive strips between rows to balance temperatures.
Improved high conductivity thermal interface material (TIM) to reduce thermal resistance.
Central thermal bus: A central copper plate to act as a thermal equalizer.

SAEE R .

Heat sink optimization: Modify its geometry to achieve uniformly distributed
contact points.

Scenario 2: Infeasibility of electrical solutions.

The LLM'’s response was categorical: the thermal gradient is a physical phenomenon
intrinsic to heat flow and cannot be compensated for or corrected through electrical connec-
tions. The model detailed how different electrical configurations (series, parallel) could,
in fact, exacerbate thermal imbalance problems, causing cooler cells to act as a brake or
hotter cells to become overloaded, thus limiting overall efficiency. While active electronic
solutions, such as shifting the maximum power point or balancing with transistors, can
mitigate losses, their impact is limited compared to the significant gradients proposed in
Scenario 1. The LLM redirected the focus toward real thermal solutions, such as diffusers,
as they are superior in addressing the root cause of the problem.

Therefore, the LLM not only responded accurately but also corrected potential con-
ceptual fallacies of the user [27]. By clearly defining the boundaries between electrical and
physical solutions, the LLM prevents resources from being invested in ineffective strategies.
It thus provides a baseline of reality for the experimenter, demonstrating its value as an
engineering support tool.

6. Conclusions

This work establishes a large language model (LLM) specialized in the domain of
thermo-electric generators (TEGs) for deployment on local hardware. Starting with the
generalist JanV1-4B and Qwen3-4B-Thinking-2507 models, an efficient fine-tuning (FT)
methodology (QLoRA) was employed, modifying only 3.18% of the total parameters of
these base models. The key to the process is the use of a custom-designed dataset, which
merges deep theoretical knowledge with rigorous instruction tuning to refine behavior
and mitigate catastrophic forgetting. The dataset employed for FT contains 202 curated
questions and answers (QAs), strategically balanced between domain-specific knowledge
(48.5%) and instruction-tuning for response behavior (51.5%). Performance of the models
was evaluated using two complementary benchmarks: a 16-question multilevel cognitive
benchmark (94% accuracy) and a specialized 42-question TEG benchmark (81% accuracy),
scoring responses as excellent, correct with difficulties, or incorrect, based on technical
accuracy and reasoning quality. The model’s utility is demonstrated through experimental
TEG design guidance, providing expert-level reasoning on thermal management strategies.

QLoRA has been validated as an exceptionally effective strategy for domain special-
ization on local hardware. The study provides a replicable roadmap for creating expert Al
tools, democratizing access to a technology that traditionally requires large-scale comput-
ing infrastructures.

The specialized TEG model not only demonstrated deep conceptual knowledge but
also exhibited advanced reasoning capabilities. It outperformed larger and more popular
base models, such as Llama3-8B and Mistral-7B, proving that, for technical tasks, special-
ization is more important than the size of the LLM. The model’s ability to self-correct and
perform critical analysis of numerical data elevates it from a simple information retrieval
tool to a genuine engineering synthesis and analysis tool in TEG.

This study has significant implications for Al engineering and development. It demon-
strates that it is possible to develop custom, secure, and high-performance Al assistants
that operate locally, ensuring data privacy and accessibility. It paves the way for the
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creation of a new generation of engineering tools that can accelerate design, analysis, and
problem-solving in highly technical domains.

In summary, the novelty of this research lies in four main contributions that advance
the state of the art in applying LLMs to specialized engineering. First, a comprehensive
and fully reproducible methodology is presented, encompassing everything from data
curation to local deployment, to transform the general-purpose JanV1-4B LLM into a
specialized assistant within the TEG engineering domain. Second, a strategic design for a
training dataset is proposed that balances the injection of deep knowledge—the conceptual
‘what’—with the training of behavior and responsiveness—the procedural ‘how’—which
is essential to mitigate catastrophic forgetting and ensure robust performance. Third, a
rigorous, multi-level assessment framework is introduced, designed to measure advanced
cognitive skills, such as critical reasoning and self-correction, transcending traditional
performance metrics. And fourth, the feasibility of achieving this high level of specialization
on local hardware is empirically demonstrated, validating the QLoRA approach as an
effective way to democratize the development of Al specialized in the TEG sector.

This article could set more ambitious goals in the near future, such as expanding
and curating the dataset by increasing the number of TEG specialists or carrying out and
analyzing other experimental models.
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Appendix A

Examples of questions from the dataset of the set of 16 skill-based questions:

Question 13. Material selection and figure of merit (ZT)

A team of engineers is designing a TEG for a space probe. The heat source temperature
is stable at 500 K. For the thermocouple legs, they have two experimental semiconductor
materials to choose from, whose properties at 500 K are shown in Table A1:

Table Al. Question 13. Material properties.

Property Material Alpha Material Beta Unit

Seebeck coefficient (S) 300 220 uv/K

Electrical conductivity (o) 1200 800 S/m
Thermal conductivity (k) 2.5 0.8 W/(m-K)

Both designs will use the same leg geometry (same length and area).
Answer the following questions with reasoned justification:
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e Fundamental Analysis: The Figure of Merit (ZT) is calculated as ZT = (S?0/x)-T.
Calculate and compare the ZT for both materials at 500 K. Which material is intrinsi-
cally superior?

e  Thermal System Analysis: Explain how the high thermal conductivity (k) of Material
Alpha could become a system-level problem, affecting the temperature gradient (AT).

e  Design Decision and Optimization: Which material would be the most robust and
efficient choice? Justify your decision by explaining the critical balance that each
material manages best.

Question 14: Influence of geometry and contact resistance:

This question maintains the core of material comparison but introduces practical
factors that complicate the decision: leg geometry and electrical contact resistance.

Question 14 Statement: A laboratory is developing a TEG prototype to recover waste
heat from an industrial engine, whose properties at 600 K are shown in Table A2 Two
materials, Gamma and Delta, are being considered for the n and p legs. However, due
to manufacturing limitations, the legs of each material must have different geometries.
Furthermore, the joining process introduces parasitic contact resistances.

Table A2. Question 14. TEG prototype properties.

Property Material Gamma Material Delta Unit
Seebeck coefficient (S) —250 —180 uv/K
Electrical conductivity (o) 900 1500 S/m
Thermal conductivity (k) 1.2 1.8 W/ (m-K)
Leg length (L) 5 8 mm
Cross-sectional area (A) 4 4 mm?
Contact resistance (R_c) 1.5 0.5 mQ)

Answer the following questions:

e Intrinsic Efficiency Analysis: Calculate the Figure of Merit ZT = (S?c/«) T for both
materials at 600 K. Based solely on ZT, which material seems better?

e Calculate the total electrical resistance (Rleg) for one leg of each material. How
does the contact resistance affect the apparent advantage of Material Delta’s
electrical conductivity?

Examples of three questions and answers of the dataset of the set of 16 pure
domain questions:

e {“instruction”: “What is the mathematical formula for the thermoelectric figure of
merit, ZT?”, “output”: “ZT = (S*> x o / k) x T"}.

e {“instruction”: “For an n-type semiconductor, is the Seebeck coefficient (S) positive or
negative?”, “output”: “Negative”}.

e {“instruction”: “For a p-type semiconductor, is the Seebeck coefficient (S) positive or
negative?”, “output”: “Positive”}”.
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