Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154907
Campo DC Valoridioma
dc.contributor.authorMederos-Barrera, A.en_US
dc.contributor.authorAlbors, L.en_US
dc.contributor.authorMarques, F.en_US
dc.contributor.authorMarcello Ruiz, Francisco Javieren_US
dc.contributor.authorMartinez, G.en_US
dc.contributor.authorEugenio González, Franciscoen_US
dc.date.accessioned2026-01-13T07:38:53Z-
dc.date.available2026-01-13T07:38:53Z-
dc.date.issued2025en_US
dc.identifier.issn1939-1404en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/154907-
dc.description.abstractBenthic communities, such as seagrass meadows, play a crucial environmental role in marine ecosystems and provide socio-economic benefits. Satellite remote sensing is currently used for their monitoring, and Deep Learning (DL) techniques offer improvements in mapping quality compared to traditional Machine Learning (ML). This study compares conventional ML and convolutional DL models for mapping Cymodocea nodosa meadows in El Río, Canary Islands, using WorldView-2 satellite imagery. An in-situ measurement campaign was conducted to generate an open dataset for segmentation. Evaluated models include Decision Trees, Gaussian Naïve Bayes, Support Vector Machines, K-Nearest Neighbors, Subspace KNN, Feedforward Neural Networks, U-Net, Attention U-Net, and Pix2Pix models. Results show that DL models significantly outperform conventional ML models in detecting Cymodocea nodosa. The best model (U-net) achieved an Intersection over Union (IoU) of 83% overall and 74% for Cymodocea nodosa, while the best ML model (FNN) only reached 62% and 23%, respectively. IoU was highlighted for its sensitivity to minor mapping changes. Additionally, a temporal analysis revealed a dramatic 96% reduction in Cymodocea nodosa coverage over 21 years, from 245.32 ha in 2001 to 9.31 ha in 2022. This study not only compares conventional ML and convolutional DL techniques for benthic habitat mapping but also provides a valuable methodology and dataset for future marine ecosystem monitoring research.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingen_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherCymodocea nodosaen_US
dc.subject.otherseagrass mappingen_US
dc.subject.otherMachine learningen_US
dc.subject.otherdeep learning (DL)en_US
dc.titleComparison of Conventional Machine Learning and Convolutional Deep Learning models for Seagrass Mapping using Satellite Imageryen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/JSTARS.2025.3642923en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,434
dc.description.jcr4,7
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.orcid0000-0002-0010-4024-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.author.fullNameEugenio González, Francisco-
Colección:Artículos
Adobe PDF (1,63 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.