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Abstract— Benthic communities, such as seagrass meadows, play
a crucial environmental role in marine ecosystems and provide
socio-economic benefits. Satellite remote sensing is currently used
for their monitoring, and Deep Learning (DL) techniques offer
improvements in mapping quality compared to traditional
Machine Learning (ML). This study compares conventional ML
and convolutional DL models for mapping Cymodocea nodosa
meadows in El Rio, Canary Islands, using WorldView-2 satellite
imagery. An in-situ measurement campaign was conducted to
generate an open dataset for segmentation. Evaluated models
include Decision Trees, Gaussian Naive Bayes, Support Vector
Machines, K-Nearest Neighbors, Subspace KNN, Feedforward
Neural Networks, U-Net, Attention U-Net, and Pix2Pix models.
Results show that DL models significantly outperform
conventional ML models in detecting Cymodocea nodosa. The best
model (U-net) achieved an Intersection over Union (IoU) of 83%
overall and 74% for Cymodocea nodosa, while the best ML model
(FNN) only reached 62% and 23%, respectively. IoU was
highlighted for its sensitivity to minor mapping changes.
Additionally, a temporal analysis revealed a dramatic 96%
reduction in Cymodocea nodosa coverage over 21 years, from
245.32 ha in 2001 to 9.31 ha in 2022. This study not only compares
conventional ML and convolutional DL techniques for benthic
habitat mapping but also provides a valuable methodology and
dataset for future marine ecosystem monitoring research.

Index Terms—Cymodocea nodosa,
learning, seagrass mapping.

machine learning, deep

1. INTRODUCTION

HE ocean encompasses a complex network of
physical, chemical, biological, and geological
processes. Specifically, coastal marine zones are
highly dynamic and intricate, influenced by these
processes and significantly impacted by anthropogenic factors
[1]. It is estimated that over 60% of the global population
resides within 100 kilometers of the coast, making these areas
not only ecologically but also economically and socially vital
[2]. Coastal zones host a diverse array of habitats, including
seagrass meadows, coral reefs, mangroves, and estuaries, which
are home to numerous plant and animal species [3]. The
sustainable management of these coastal areas is crucial to
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preserving their biodiversity and ensuring they continue to
provide essential ecological services [4].

Benthic communities, including seagrass meadows, corals,
and algae, play a crucial role in aquatic ecosystems. These
habitats provide significant ecological and socio-economic
benefits, such as coastal protection, carbon fixation, oxygen
production, and serve as nurseries for commercially important
species [5], [6]. However, these ecosystems are under threat
from anthropogenic activities and the impact of climate change,
making their sustainable management and monitoring essential
[71, [8].

Given the alarming decline of seagrass meadows and their
ecological significance, it is necessary to implement monitoring
strategies that are not only accurate but also scalable and cost-
effective. Traditional in-situ surveys, while highly precise, are
limited by their high operational costs and logistical
complexity, which makes them unsuitable for large-scale or
frequent assessments. This limitation has driven the adoption of
remote sensing technologies as a fundamental tool for
environmental monitoring. Remote sensing enables the
acquisition of consistent, repeatable, and spatially extensive
data [9], which is critical for detecting temporal changes in
benthic habitats. Furthermore, when combined with advanced
computational techniques, remote sensing can provide detailed
and timely information to support conservation and
management decisions.

Specifically, remote sensing has proven to be useful for
monitoring  shoreline  changes,  suspended  matter
concentrations, chlorophyll levels, pollutant discharges, the
state of coastal and marine habitats and changes in bathymetry
[10],[11],[12]. Additionally, remote sensing is used to measure
sea surface temperature, salinity, and surface roughness.
Despite the availability of numerous approaches for measuring
these variables in oceanic environments (Case I waters), coastal
waters (Case II) present unique challenges due to their
complexity [13]. Consequently, developing reliable methods to
characterize these environments remains a significant research
area.
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Technological advancements in the early 2000s, such as the
launch of sensors like Moderate Resolution Imaging
Spectroradiometer (MODIS) and Medium Resolution Imaging
Spectrometer (MERIS), enabled the study of coastal
environments [14]. However, their spatial resolution was
insufficient for monitoring areas close to the coastline. The
launch of the WorldView-2 multispectral satellite in 2009
marked a significant milestone, offering less than 2-meter
resolution in its eight multispectral bands [15]. This satellite
introduced an unusually high number of channels, including a
high-penetration blue band, enhancing the monitoring
capabilities of coastal waters up to depths of 20-30 meters [16].

In this context, the classification of benthic habitats is
highlighted, allowing the detection of changes in the
populations of seagrass meadows and sediments of the seabed
[10]. The benthic habitats mapping using remote sensing data
involves several challenges, such as the presence of turbulent
water, the maximum detectable depth, or the accuracy of model
estimates, where the choice of classification algorithms is
critical [17]. Regarding estimation methods, conventional
Machine Learning (ML) techniques have been traditionally
used for seabed classification, where traditional models such as
Decision Tree (DT) [18] and Gaussian Naive Bayes (GNB)
[19], common models such as Support Vector Machine (SVM)
[20] and K-Nearest Neighbors (KNN) [21], or more advanced
models such as the use of Ensemble Learning [22] or the
application of Feedforward Neural Network (FNN) [21] can be
highlighted. Among the prominent models that have
historically been used, the SVM stands out, since it obtains
satisfactory results even if the quantity and quality of the
training data is not high [23]. However, with the advancement
of techniques, FNN may also be a promising candidate.
Nevertheless, these algorithms often classify at the pixel level
without exploiting the surrounding spatial information [24].

On the other hand, Deep Learning (DL) techniques have
recently attracted attention for their ability to exploit the
spectral and spatial components of remotely sensed imagery
[25]. The applications of DL methods have grown significantly
in recent times, with diverse applications ranging from
agriculture [26], [27], food quality [28], or medical imaging
[29], [30], highlighting the versatility of deep learning for
segmentation tasks. It is worth mentioning the encoder-decoder
architectures where, from an image, a semantic segmentation is
obtained, such as U-Net model [31]. In addition to the classic
U-Net, variants have been proposed to improve performance in
complex environments. For example, the use of attention
mechanisms [32], like in the Attention U-Net model [33] that
introduces Attention Gates (AGs) in the skip connections,
allowing the network to focus on the most relevant regions of
the image while suppressing irrelevant or noisy features. This
mechanism is particularly useful in heterogeneous benthic
habitats, where class boundaries can be subtle.

Another relevant architecture is the conditional Generative
Adversarial Network (cGAN) [34]. For example, the Pix2Pix
model [35] is based on a U-Net architecture for segmentation,
and the discriminator, known as PatchGAN, evaluates the
realism of local patches rather than the entire image. This
adversarial training strategy encourages the generation of more
accurate and spatially consistent segmentation maps.
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* Decision Tree (DT), Naive Bayes (NB), Support Vector Machine (SVM),
Maximum Likelihood Classifier (MLC), Random Forest (RF), K-Nearest
Neighbors (KNN), Subspace KNN (S-KNN), Classification and Regression
Tree (CART), Deep Convolutional Neural Network (DCNN).

However, despite their potential, DL models also present
challenges, e.g. they require elaborate datasets for training, the
fitting of hyperparameters has a higher complexity, or that there
is a high interdependency of the results to the architecture, the
data and the hyperparameters used [36]. Therefore, a
comprehensive DL analysis would serve a useful purpose.

In Table I, a review of the literature on seagrass mapping
using satellite images is shown. The study reveals a trend
towards using commercial platforms like WorldView-2/3 and
open data from Sentinel-2 or Landsat satellites. Most studies
focus on clear and shallow waters, employing classifiers such
as DT, Naive Bayes (NB), SVM, and KNN. In addition, the
Maximum Likelihood Classifier (MLC) model is also
employed, which, like GNB, is a probabilistic model based on
Bayes’ theorem. The difference between the two is that GNB
assumes class independence, as well as a Gaussian probability
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density function. Furthermore, Random Forest (RF) is shown
[48], which is an application of Ensemble Learning techniques
to DTs. On the other hand, recent works have begun exploring
DL techniques, especially Convolutional Neuronal Networks
(CNN) [49], where the presence of the U-Net model is
highlighted. In addition, the widespread use of the Accuracy
metric is noticeable, as is the recent use of the Intersection over
Union (IoU). In this case, the need to compare different
evaluation metrics is also apparent.

Despite the growing use of conventional ML and DL in
remote sensing, several limitations have been identified in the
literature, particularly in marine environments. Traditional ML
models, such as SVM or KNN, often rely solely on spectral
information and may struggle to capture spatial patterns critical
for benthic habitat mapping. On the other hand, DL models like
U-Net, while powerful, require large, annotated datasets, are
computationally intensive, and their performance is highly
sensitive to hyperparameter tuning and data quality [50].
Moreover, DL models are often criticized for their lack of
interpretability, which can hinder ecological understanding and
decision-making [51]. These challenges are further exacerbated
in optically complex coastal waters (Case II), where water
column effects and variable turbidity can distort spectral
signatures. As highlighted by Maxwell et al. [52], the lack of
standardized evaluation practices and the risk of overfitting in
DL models call for more systematic and reproducible
methodologies. Therefore, a critical and systematic evaluation
of these techniques is essential to guide their effective
application in marine ecosystem monitoring.

In light of these challenges, this work presents a
comprehensive methodological study specifically adapted to
the complexities of marine environments. A detailed
comparison is conducted between multiples conventional
Machine Learning models for pixel classification—such as
GNB, DT, KNN, S-KNN, SVM and FNN—and Deep Learning
models—such as U-Net, Attention U-Net, and Pix2Pix —,
which are specifically designed for semantic segmentation. An
incremental training strategy is proposed for the U-Net model,
evaluating multiple loss functions, learning rates, scheduling
techniques, and regularization methods. Additionally, a
comparative assessment of evaluation metrics is performed to
identify the most sensitive indicators for benthic habitat
mapping. The main contributions of this work can be
summarized as follows:

e An in-situ measurement campaign was carried out
which, to the authors' knowledge, generated the first
database for the segmentation of Cymodocea nodosa
meadows with WorldView-2 images. (Information
available  at  https://github.com/MederosBarrera-
Antonio/CymoHub).

e A comprehensive comparative study of conventional
Machine Learning models and Deep Learning model is
conducted, including an incremental analysis to identify
techniques that enhance benthic habitat mapping. To
the best of our knowledge, no previous studies have
applied Attention U-Net and Pix2Pix architectures for
seagrass mapping using multispectral satellite imagery.

e Different evaluation metrics are analyzed to determine
the most appropriate for benthic habitat mapping.

Study area

Puertodel v Arrecife

100 km

13°29' 40" W

(b)
Fig. 1. Study area: (a) El Rio strait between the islands of La
Graciosa in the north and Lanzarote in the south, Google
Earth©, (b) WorldView-2 image on 22 January 2022.

This work addresses the lack of systematic comparisons
between conventional ML and DL models for seagrass mapping
in optically complex waters, introducing a dataset and
evaluating multiple performance metrics to guide future
research.

II. AREA OF STUDY AND DATA

A. Area of Study

In particular, the specific study area is in the strait called El
Rio, which separates the islands of La Graciosa and Lanzarote,
in the Canary Islands, shown in Fig. 1(b). In this region, the
morphology of the site and the global marine currents generate
a strong current in the strait, generally in a north-south
direction. Fig. 1(b) shows lines of varying intensity created by
suspended matter due to these currents, assuming non-clear
Case II waters. It should be noted that the image presented is
the result of extensive preprocessing, which is described in the
methodology. In addition, another fundamental aspect is the
depth range, which is challenging up to 15 m depth. In this case,
the high complexity of the study area is observed.

The study area benefits from a high level of environmental
protection, which has contributed to the long-term stability of
its benthic habitats. Specifically, it is part of the Chinijo
Archipelago Marine Reserve, the largest marine reserve in the
European Union, with a surface of 700 km? approximately. The
region is also designated under several conservation
frameworks: UNESCO Biosphere Reserve (since 1993), Site of
Community  Importance  (SCI) and Special ~ Area  of
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Conservation (SAC) under the Natura 2000 network (since
2001), Natural Park of the Chinijo Archipelago (since 1986),
and Special Protection Area for Birds (SPA) (since 1994).
These overlapping protections have significantly limited direct
anthropogenic pressures.

Biological objectives in this region include the monitoring
of species and populations associated with the seabed. In
particular, the historic underwater meadows of Cymodocea
nodosa [53], [54], known locally in the Canary Islands as
“sebadales”, which are of vital ecological importance and
productivity in the area. In particular, the declaration of the SCI
and SAC protection of the area is due to the presence of this
species. However, the meadows are in decline. Previous studies
in the area concluded that there was an 81% reduction in
populations in 10 years, between 2001 and 2010 [54].
Therefore, monitoring the Cymodocea nodosa population is of
great importance. On the other hand, there are also other species
of importance in the area, such as Caulerpa prolifera and
filamentous algae [54]. Fig. 2 shows examples of the most
representative species in the study area. The images show that
the population density of the marine flora is low in the study
area, which shows the complexity of its detection using remote
sensing.

B. Satellite Data

In this study, a very-high-resolution multispectral image
from the WorldView-2 (WV-2) satellite of 22 January 2022 has
been used. Fig. 1(b) shows the natural color composite of the
chosen image. WV-2 images are composed of 8 channels
ranging from blue to infrared, from about 400 to 1040 nm. In
this case, the spatial resolution is 2.0 m, the Off Nadir angle is
26.1°, and the radiometric resolution is 11-bits.

On this image, preprocessing was initially applied to obtain
sea surface reflectance before using it for dataset generation,
training and map estimation. The preprocessing techniques will
be explained in more detail in the next section.

C. In-situ measurement campaign

In this work, supervised models are used, so that reference
data for training and validation of the models are necessary to
obtain seabed maps. However, nowadays there is no openly
available datasets that can be used for the characterization of
Cymodocea nodosa using satellite images. For this reason, a
campaign of in-situ measurements was initially carried out to
characterize the seabed in the study area. Subsequently, the
database was generated by manually segmenting the image in
the areas where measurements exist, thus, providing, as far as
our knowledge, the first public database with these
characteristics.

Regarding the in-situ campaign, it was carried out on 29
October 2023 and consisted of filming 79 videos in different
locations. For this purpose, an inflatable boat, a Gopro Hero 9
camera, and a Garmin eTrex 10 Global Positioning System
(GPS) were used. To capture the videos, the camera was
submerged up to the seabed at each location. It should be noted
that the GPS has the function of georeferencing the
measurement points, as well as generating a track of the boat,

4

- Zone1

Zone 2

Fig. 3. Distribution of database for seabed

characterization.

images

which is useful for the analysis of the videos. Examples of
seabed types recorded are in Fig. 2.

The videos captured were then analyzed, classifying the
type of substrate and the flora community on the seabed. The
analysis highlighted the joint presence of Cymodocea nodosa
and Caulerpa prolifera on sandy seabeds, as well as red
filamentous algae on all types of seabeds, both sandy and rocky.
In addition, the presence of sandy and rocky bottoms without
vegetation was also noted. On the other hand, the presence of
Dictyotales sp., maérl and Lobophora sp. was detected but to a
minor extent than the previous seabed types.

Finally, it should be noted that the satellite image used in
this study was acquired on January 22, 2022, and the in-situ
measurement campaign was carried out on October 29, 2023.
In this case, it is considered that the temporal difference does
not significantly affect the validity of the training and validation
of the models. In this case, the waters around the Canary Islands
experience relatively mild temperature variations, due to the
influence of the cold Canary Current [55]. This relative thermal
stability may contribute to less pronounced seasonal changes in
underwater vegetation compared to regions with more extreme
temperature shifts. In addition, the study area has multiple
figures of environmental protection, as mentioned above, which
has contributed to a remarkable stability of the main benthic
habitats over time. Although changes in the distribution of some
species, such as Cymodocea nodosa, have been detected, these
appear to be related to long-term environmental factors, such as
climate change, rather than direct anthropogenic impacts. In

Fig. 2. Examples of the flora present in the study area: (a)
Cymodocea nodosa, (b) Caulerpa prolifera, and (c)
filamentous red algae.
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addition, it should be noted that the in-situ data were not used
directly as training labels, but as a reference to perform a
manual segmentation of the satellite image, thus ensuring
spatial consistency with the patterns observed in the image.

D. Database Generation

Using the information from the campaign, a manual image
segmentation was performed in the proximity of the filming
location. Afterwards, the manual segmentation was divided into
51 images to generate the database, as presented in Fig. 3. The
size of each image is 70x70 pixels, or 140x140 m given the
spatial resolution of the image (2 m). The choice of size was
based on maximizing the surface area considering the spatial
limitations of the camera recordings, as the camera was dropped
to the seabed.

On the other hand, the final classes chosen for the study
were: Cymodocea nodosa, which is mixed to a minor extent
with Caulerpa prolifera; filamentous red algae; sand without
vegetation; and rock without vegetation. It is worth mentioning
that the land class has been added, and that the rest of the classes
are not sufficiently extensive in population to be appreciated, as
they consist of isolated individuals.

In addition, it can be seen in Fig. 3 that the images have been
grouped into different zones, which correspond to the presence
of different classes or seabeds: rock without vegetation, land
and sand in zone 1; filamentous red algae and sand in zones 2,
3, 6, and 9; sandy seabed in zone 4; Cymodocea nodosa in zones
5 and 8; and rocky and sandy seabed in zone 7.

E. Training and validation distribution

A further fundamental aspect is the partitioning of the
database for the generation of the training and validation
datasets. In this case, a 70/30% distribution has been
considered, respectively, to increase the amount of data in
validation due to the limited number of images.

The prior partitioning of the database into different zones is
useful for the division, since each zone corresponds mainly to a
predominant class, allowing to avoid overfitting by considering
a higher class representability between the training and
validation datasets. For this purpose, in each zone the images
were split approximately with 70/30% proportion. In addition,
the bathymetric gradient was also considered for the splitting.
This aspect is also fundamental as depth affects the observed
radiance at different wavelengths. This behavior can be
modelled by the diffuse attenuation coefficient in the radiative
equations.

The images chosen for validation are 6, 10,9, 7, 13, 17, 19,
25,29, 34,37,42, 46, and 50, using the nomenclature in Fig. 3.
On the other hand, the remaining images correspond to the
training dataset. Therefore, finally there is an approximate
distribution of 72.5/27.5% that considers the distribution of
classes and depth.

F. Data augmentation

Finally, it is important to note that rotations have been
applied as data augmentation. The rotations chosen were 90°,
180° and 270°. In addition, they have been applied to each
training and test partition separately to avoid information
leakage between sets.

III. METHODOLOGY

To ensure accuracy and reliability in mapping benthic
habitats using passive remote sensing imagery, techniques must
initially be applied to reduce noise on useful information. That
is, phenomena that interfere with the observation of the very
small amount of radiation reflected by the seafloor must be
removed. Therefore, pre-processing techniques are applied to
eliminate distortions caused by the satellite sensor, the
atmosphere and the water surface [56].

Subsequently, seabed type maps can be obtained. In this
case, two groups of models are studied. Firstly, Machine
Learning models, which are based on pixel classification, where
only the spectral information of each pixel is analyzed
individually, without considering neighboring pixels. In this
group, the GNB, DT, SVM, KNN and FNN models are
compared. On the other hand, the Deep Learning U-Net,
Attention U-Net, and Pix2Pix models are studied, based on
image segmentation, in which, in addition to the information of
each pixel, the neighboring spatial information is considered. In
this case, three common experiments were carried out,
consisting of the analysis of different loss functions and
learning rates (LR), the study of the use of the Exponential
scheduler for LR, and the application of L2 regularization [57].
In addition, an exclusive experiment was carried out for the
Pix2Pix model, where the impact of a specific hyperparameter
of its loss function was observed.

Finally, the maps obtained are analyzed. In this case, the
study of five evaluation metrics should be highlighted. Fig. 4
presents a diagram of the aforementioned methodology.

A. Preprocessing

To ensure the accuracy and reliability in benthic habitat
mapping using multispectral passive remote sensing images,
different pre-processing steps are undertaken. As mentioned,
the main objective is to reduce the noise generated by the
optical medium in both downward and upward directions. For
this purpose, atmospheric correction and sunglint correction is
used. However, other pre-processing steps are also used, such
as georeferencing, so that the geographic information is correct;
masking of the study area and water, so that the presentation is
more appropriate; and radiometric correction, to deal with
effects inherent in the sensor capture.

Initially, georeferencing correction is performed to address
spatial deviations in the original WV-2 image [58]. This
involves using reference ground points and applying a first-
order polynomial transformation. This pre-processing is crucial
to be able to compare different maps.

Next, the study area and water masking are addressed, with
the objective of only retaining water pixels in the study area
[56]. This is useful for the presentation of the results. For water
masking, the Normalized Difference Water Index (NDWI) was
used [59].

Radiometric calibration follows, converting digital numbers
from the satellite sensor into radiance values at the top of the
atmosphere (ToA) using the linear model of analog-to-digital
converters [60]. The values of the linear model are based on
metadata information provided by the IMD metadata file. This
step ensures that the images reflect physical values accurately
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and avoid other banding phenomena due to different sensor
properties.

An atmospheric correction is then applied to correct
atmospheric effects such as absorption or scattering. This
process converts ToA radiance values to reflectance values at
the bottom of the atmosphere. The Second Simulation of a
Satellite Signal in the Solar Spectrum (6S) model [61], [62] is
used for this correction, employing a maritime aerosol profile,
a mid-latitude summer atmospheric profile, a clear water
reflectance profile, a surface altitude of 0 m, as this is a marine
application, and an Atmospheric Optimal Thickness (AOT)
value of 0.11 retrieved from the MODIS Aqua satellite through
NASA's Giovanni service [63].

Subsequently, sunglint correction is performed to mitigate
the effect of sunlight reflecting off waves, which causes
brightness in the images. The Hedley et al. algorithm [64],
which uses a linear regression between visible and near-infrared
(NIR) bands, is applied. The two independent multispectral
sensors (MS1 and MS2) of WV-2 satellite are utilized, with
NIR1 correcting the blue, green, and red channels, and NIR2
correcting the coastal blue, yellow, and red edge channels. This
avoids displacement artefacts in the image.

Finally, it is worth mentioning that correction of the water
column has not been applied since, as previously studied [44],
it does not improve seabed mapping results in turbulent waters
and notable depths, as in this case study.

B. Mapping: conventional Machine Learning models

Conventional ML models, which are based on the
classification and estimation of the spectral information of each
pixel, are the first category to be studied. In this case, ML
models contemplated can be grouped into four approaches.
Initially, there are the (i) traditional models, which are the GNB,
a probabilistic model based on Bayes' rule, and the DT, a model
based on the construction of a tree-like graph. Next, the (ii)
conventional models, which are based on the division of the
feature space, such as the KNN and the SVM. Subsequently,
the model used by (iii) Ensemble Learning, Subspace KNN, is
used. Finally, the (iv) FNN model is considered, which is
positioned as the initial model for Deep Learning models. This
last model is based on obtaining an artificial neural network.
Next, the different algorithms are briefly explained.

- Gaussian Naive Bayes

Gaussian Naive Bayes (GNB) [65] is a probabilistic
classification model based on Bayes’ theorem, which assumes
conditional independence between the features. In this model,
the feature vector X = (xy,..x,) represents the spectral
channels, and the class variable Y represents different seabed
types. The conditional probability P(y|X) is proportional to the
product of the conditional probabilities of each feature given
the class. In GNB, the probability density function of each
feature is assumed to be Gaussian. Maximum A Posteriori
(MAP) estimation [66] is used to estimate the prior probability
P(Y) and the likelihood P(x;|Y). The Gaussian assumption
simplifies the computation of the likelihood, making GNB a
computationally efficient model suitable for high-dimensional
data.

r [

Pre-processing L

Ground
control
points

Georeferencing correction

v

Study area and water masking

v

Radiometric calibration

v

Atmospheric correction

v

Sunglint correction

l

g |
[
[
{
{

Mapping
Machine ( Deep P
Learning Learning Training/
(GNB; DT, SVM, (U-Net, Attention validation

datasets

e

Fig. 4. Methodology for the generation of seabed type maps.

KNN, S-KNN, FNN)

U-Net, Pix2Pix)

Assessment (Accuracy, Recall,
Precision, F; Score, loU)

- Decision Tree

Decision Trees (DT) [67] are multivariate classification
models that use conditional statements to categorize inputs into
a finite set of outputs. The structure of a DT consists of an initial
node (root), intermediate nodes (decision points), and final
nodes (leaves) that represent the classification outcomes. Each
intermediate node splits the data into subsets based on specific
criteria, refining the classification at each level. The training
process involves creating bifurcations to generate more
homogeneous subsets, with the goal of increasing the
homogeneity of each subset compared to the original dataset.
The Gini Index (GI) [68] is commonly used to quantify the
homogeneity of the splits. In this case, the maximum number of
splits is set to 100.

- Support Vector Machine

Support Vector Machines (SVM) [69] are supervised
learning models used for classification tasks. They aim to find
the optimal hyperplane that separates different classes in the
feature space. The SVM algorithm constructs a hyperplane or
set of hyperplanes in a high-dimensional space, which can be
used for classification, regression, or other tasks. For non-linear
classification, SVMs use kernel functions to transform the
feature space into a higher dimension where a linear separation
is possible. In this case, the Gaussian Radial Basis Function
(RBF) kernel is used [70]. This kernel function allows the SVM
to create a non-linear decision boundary in the original feature
space.

- K-Nearest Neighbors

K-Nearest Neighbors (KNN) [71] is a supervised ML
classification method that assigns a point in the feature space to
a group based on distance. In this method, new data is classified
according to the group with the highest presence among the k
nearest neighbors, where k is a hyperparameter. In this case, 10
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neighbors are chosen. Another hyperparameter is the distance
metric used to determine the k neighbors. In this work, the
Euclidean distance is used. For a new data point, the Euclidean
distance to all other points is calculated, and only the k nearest
neighbors is considered. The new data point is then classified
based on the majority class among these neighbors, a process
known as majority voting.

- Subspace KNN

Ensemble Learning [72] techniques are used in Machine
Learning to reduce data variance and improve system
performance by combining multiple models. For a new input,
each trained model provides a result, and the final output is
determined by voting for classification among the models’
outputs. Key hyperparameters include how the dataset is
sampled and divided, and the number of subsets and models to
train. One method for generating subsets is Random Subspace
[73], which involves uniform sampling without replacement,
ensuring that the intersections of generated subsets are empty,
meaning no data points are repeated. In the context of K-
Nearest Neighbors (KNN), Random Subspace can be applied to
create diverse training subsets, enhancing the robustness of the
KNN model. The resulting model is Subspace KNN [74]. By
using different subsets of features, the KNN algorithm can
better handle variations in the data and improve classification
accuracy. This approach helps in managing the computational
complexity and prevents overfitting by ensuring that each
model in the ensemble learns from a unique subset of the data.
In this case, after a preliminary assessment, 30 models are used
for Ensemble Learning, as well as a Subspace dimension of 5.

- Feedforward Neuronal Network

Feedforward Neural Networks (FNNs) [75] are a type of
Atrtificial Neural Network (ANN) where information flows in
one direction, from input to output, without feedback loops. An
FNN consists of an input layer, hidden layers, and an output
layer, with each neuron in a layer connected to all neurons in
the next layer. The input layer receives data, hidden layers
perform computations using activation functions like Sigmoid,
hyperbolic tangent (Tanh), or Rectified Linear Unit (ReLU),
and the output layer produces the final classification. Training
involves adjusting weights to minimize error using
backpropagation. Key hyperparameters include the number of
hidden layers, neurons per layer, and activation functions.
Various configurations were analyzed, showing that these
choices significantly impact accuracy and generalization. FNNs
are effective for tasks like image classification but require
careful tuning and computational resources. In this case, 78
different combinations of network sizes by modifying the
number of hidden layers (1 to 3), and the number of neurons in
each layer were analyzed, where the model with 3 hidden layers
and 100, 50 and 50 neurons obtained the best results. In
addition, the Sigmoid, TanH and ReLU activations functions
were analyzed, and TanH obtained better results.

C. Mapping: Deep Learning models

For applications with large data dimensions, such as
computer vision, the number of parameters in FNN models
increases significantly. Thus, Convolutional Neural Networks

(CNNs) [49] address this inconvenience by using convolution
and pooling functions to reduce the number of parameters.
Initially, CNNs used a FNN at the last stage to classify the entire
image, which was ineffective for segmentation. Therefore,
CNNs with encoder-decoder architecture were developed [76].
The encoder uses convolution to extract features, and the
decoder uses transposed convolution to restore spatial
dimensions, reducing the number of image channels and
enabling effective image segmentation without an FNN.
Additionally, other techniques were applied in DL models, such
as attention mechanisms [32] that allow models to focus on
more relevant parts of images. On the other hand, the use of
generative adversarial neural networks has increased, especially
conditional (cGAN) [34], in which a generator, such as a
segmentation encoder-decoder network, faces a discriminator,
where they mutually try to deceive each other by improving
their performance in a symbiotic approach. In this case, the
following models are implemented: U-Net [31], an encoder-
decoder CNN; Attention U-Net [33], which applies Attention
Gates (AGs) in the skip connections of U-Net; and Pix2Pix
[35], where the generator is a basic U-Net and the discriminator
is a PatchGAN.

- U-Net model

A CNNs with encoder-decoder architecture widely used for
semantic segmentation is the U-Net. In addition to the above
aspects, U-Net also has skip connections where the image
generated in the convolution section is copied to the
corresponding level of the same channel depth in the transposed
convolution section. Skip connections allow the network to
access features at different scales. The U-Net used in this work
is shown in Fig. 5(a), where each block refers to an image, the
vertical size to its dimension, and the number at the top
corresponds to the number of channels in the image. In this
case, Attention Gates are not used. Originally, the input image
is based on an 8-channel image, corresponding to the WV-2
sensor. On the other hand, the output image contains 5 channels,
corresponding to the 4 types of seabed types mentioned above,
plus an extra one corresponding to the land. It should be noted
that, in the segmentation, the image must be completely
annotated. Therefore, the land pixels must be annotated in
coastal areas, as is the case of Zone 1 (Fig. 3), even if they are
zero due to the water mask preprocessing.

There are many hyperparameters inherent to the network
and its training, such as the number of convolution and pooling
stages, the number of convolution filters, the activation
functions, the type of pooling, the loss functions, the optimizer,
the number of training epochs, the initialization of the weights,
or the learning rate values [57]. Additionally, there are
techniques that can improve the training or estimation, such as
the application of early stopping [77], the use of scheduler for
the learning rate [78], or the application of regularization
techniques [79]. The high complexity of choosing optimal
hyperparameters, compared to conventional ML models, is
highlighted. In this case, an incremental methodology is
applied, based on three experiments where, at each step, new
techniques are applied to the best models of the previous
experiment.
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Fig. 5. Deep Learning architectures used for seagrass segmentation: (a) U-Net architecture with optional Attentions Gates (only
used for Attention U-Net). (b) Attention Gate architecture. (c) Pix2Pix and PatchGAN discriminator architectures.

It is worth noting that there are common hyperparameters.
Initially, the number of convolution and pooling stages has been
reduced to 3 with respect to the original U-Net, due to the
limitations of the spatial dimensions of the image, as well as to
reduce the number of parameters to facilitate training.
Remember that a limited database is available. Moreover, the
number of convolution filters are presented in Fig. 5. In
addition, the early stopping has been applied to avoid temporal
divergence in training. In this case, the value of the loss function
in the evaluation has been chosen as the metric, as well as 140
epochs of patience to stop the training. The hyperparameters
chosen in general for all the experiments, as well as the specific
hyperparameters in each one, are presented in Table II.

- Attention U-Net model

The Attention U-Net model is an extension of the classic U-
Net that incorporates attention mechanisms in the skip
connections between the encoder and decoder. Specifically,
Attention Gates (AGs) are used, which allow the model to focus
on relevant regions of the information transmitted in the skip
connection, suppressing irrelevant or noisy activations. Instead
of directly transferring the features from the encoder to the
decoder, AGs filter important information based on the context
of the regions, which improves segmentation in complex
environments such as benthic habitats. This architecture is
especially useful in images with high spatial variability. Fig.
5(b) shows the structure of the AGs used in this model. It should
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be noted that AGs introduce parameters to the model,
increasing its size.

- Pix2Pix model

Pix2Pix is a deep learning model based on conditional
Generative Adversarial Networks (cGAN), designed for image
translation tasks such as semantic segmentation. In this
architecture, the generator consists of a U-Net model that
produces segmentation maps from input images, while the
discriminator, known as PatchGAN in this case, evaluates
whether the received segmentations are real or generated by the
generator. The relationship between generator and
discriminator is shown in Fig. 5(c), as well as the architecture
of the PatchGAN used. Unlike traditional discriminators that
evaluate the entire image, PatchGAN evaluates regions or
patches of the image, allowing it to discover small details that
can be produced by the generator. Training is performed
adversarially, i.e., the generator tries to trick the discriminator
by producing realistic segmentations, while the discriminator
improves its ability to distinguish between real and fake maps.
In this case, the number of network parameters is also increased,
as an additional CNN is introduced to U-Net. Furthermore, it is
worth mentioning that, in this case, the network
hyperparameters are also increased, not only by PatchGAN, but
also by the adversarial loss function.

- Experiment 1: Loss functions and learning rates

The first step in the incremental experiments is the choice of
the loss function with the best results. The loss functions studied
for U-Net and Attention U-Net are Binary Cross-Entropy
(BCE) [80], Cross-Entropy (CE) [81], Weighted Cross-Entropy
(WCE) [81], Dice Loss (DL) [82], and Generalized Dice Loss
(GDL) [82]. In the case of the Pix2Pix model, adversarial loss
is based on BCE, and L1 reconstruction loss functions is used
[35]. In addition, for each loss function, different learning rates
are used during training, as shown in Table II. To ensure a
comprehensive exploration of the learning rate hyperparameter,
a wide range of values was tested, including both coarse (e.g.,
0.1) and fine (e.g., 0.00001) adjustments. This strategy aimed
to identify optimal configurations under different training
dynamics and model sensitivities.

Initially, for the BCE case, two different aspects should be
noted. First, it should be highlighted that the approach is one
versus all, i.e., BCE is applied to each class, considered as 1,
and the rest of the classes are considered as 0. Finally, the mean
over the classes is obtained. On the other hand, in this case, the
sigmoid function is applied on the logit outputs of the network.
This allows several classes to have high probabilities. The
expression used is given as:

-
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+(1 yU)log(l yu)
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where y refers to the reference, y to the estimation, C to the

number of classes and N to the number of examples.
Subsequently, CE, which is widely used, is also applied, as

well as WCE where the results of each class are weighted. This

avoids overfitting due to class imbalance. In this case, the
weights are used as the normalized inverse of the frequency of
each class. In addition, the Softmax function is applied to the
logits output of the network, so the sum of probabilities of all
classes is 1. The WCE expression is given below. It should be
noted that, to obtain CE, we just arrange all the weights of each
class w as 1.

c
WCE——lZ
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On the other hand, DL and GDL loss functions are also
studied, which, like CE and WCE, GDL is a generalization of
DL considering class weights. In this case it is of special
mention that the use of DL is not as widespread in the remote
sensing literature as the rest of the loss functions. Moreover, it
is based on the use of the Dice-Serensen coefficient as a loss
function. In this case, the Sofmax function is also applied on the
logits outputs of the network. The GDL expression
contemplates DL when the weights are all 1.
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Finally, it should be noted that different loss functions are
used for the generator G (L) and discriminator D (Lp) in the
Pix2Pix model. In the case of the discriminator (PatchGAN),
the mean binary cross-entropy (BCE) loss is used to distinguish
between real and fake image pairs. On the other hand, the
generator (U-Net) is trained using the sum of the adversarial
BCE loss (Lgay) and the L1 loss (L;4). The L1 loss is used as a
reconstruction loss, encouraging the generated image to
resemble the target image. The L1 loss is weighted by a
hyperparameter A to control its impact during training.

N
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where H, W, and C describe the height, width, and channels of
the input image.

- Experiment 2. Contribution of A in generator loss

As mentioned above, the hyperparameter 1 allows modeling
the contribution of L1 loss in the Pix2Pix model. In this case,
several values have been tested to observe their impact on the
generation of benthic habitat maps. The values of 4 are shown
in Table II.
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- Experiment 3: Exponential scheduler of learning rate

With the best previous models, the application of a learning
rate scheduler is studied to improve the result and to make a fine
adjustment of the studied values. In this case, the Exponential
scheduler is used where, starting from the initial learning rate
value, its value is decreased with a negative real exponential.
The rate of decrease is controlled by the y factor, where its
values are shown in Table II.

- Experiment 4. L2 regularization

Finally, with the best models with the Exponential
scheduler, the L2 regularization [57] is applied to prevent high
parameter values, which can improve the portability of the
model in areas other than the training and validation zones. In
this case, a term is added to the loss function consisting of the
quadratic sum of the parameters. This term is multiplied by
hyperparameter weight decay which controls the regularization.
The chosen weight decay values are presented in Table II.

D. Assessment of benthic mapping

Regarding the assessment of the models, the Accuracy,
Recall, Precision, F; Score and Intersection over Union (IoU)
metrics over the validation dataset are used. In this case, all
metrics have been calculated as the average of each class, to
observe their global behavior and avoid overfitting due to class
imbalance. Additionally, the metrics for the Cymodocea nodosa
class are also presented independently due to the importance of
this seagrass species in the area.

Regarding the metrics, as indicated in Table I, Accuracy has
been widely used in literature. In addition, Recall, Precision,
and F; Score are also presented. On the other hand, IoU is
included, which is a metric that has been recently incorporated
extensively, especially in the specific field of artificial
intelligence.

The formulation of the validation metrics discussed are
detailed below:

| ~ TP +TN (6)
WAy =Tp Y TN+ FP + FN’
- TP @)
Precision = TP+ FP’
TP (®)
Recall = TP_I_—FN,
F S _ Precision - Recall 9
1ocore = Precision + Recall’
TP (10)
oV = rp TP v PN’

where TP indicates the number of true positive pixels, TN the
true negative pixels, FP the false positive pixels, and FN the
false negative pixels.

In addition to using the metrics to compare the quality of the
models, they are compared with each other to see which metric
is more sensitive to changes. For this purpose, the standard

10
TABLE 1T
DEEP LEARNING MODELS HYPERPARAMETERS.
Hyperparameter | Values
General
Convolution kernel 3x3 pixels
Convolution padding 1 pixel
Pooling Max-pooling
Activation function ReLU
Normalization Batch Normalization
Optimizer Adam
Early stopping patience 140 epochs

Experiment 1: Loss functions and learning rates
Binary Cross-Entropy (BCE),
Cross-Entropy (CE),
Weighted Cross-Entropy
(WCE), Dice Loss (DL), and
Generalized Dice Loss (GDL)
BCE for adversarial loss, and
L1 reconstruction loss
0.1, 0.01, 0.001, 0.0001, and
0.00001
Experiment 2 (only for Pix2Pix): Contribution of 2 in
generator loss
ji | 50,100, 150, 200, 250
Experiment 3: Exponential scheduler of learning rate

Loss functions for U-Net and
Attention-U-Net

Loss function for Pix2Pix

Learning rates

Scheduler of learning rate Exponential
Exponential deca
var o ” Expm{e%a ; 0.9, 0.95, 0.99, 0.995, 0.999,
0.9995, and 0.9999
scheduler
Experiment 4: L2 regularization
Regularization L2
0.0001, 0.00025, 0.0005,
Weight decays of L2 0.00075, 0.001, 0.0025,
regularization 0.005, 0.0075, 0.01, 0.025,
0.05, 0.075, and 0.1

deviation, normalized to the mean value, is used for the results
of all models for each metric. In this case, the standard deviation
is desired to be as large as possible, since it indicates that there
is greater variability in the results, indicating better sensitivity
to changes in the results.

On the other hand, other parameters have also been
considered to standardize the comparison between models.
These are the execution time, consisting of the combined
training/validation and estimation time; the number of trainable
parameters in gradient descent (GD); and the number of
hyperparameters in the models.

Finally, in addition to obtaining the metrics for quantitative
analysis, the qualitative analysis of the benthic maps is done to
analyze the portability of the model outside the training and
validation dataset.

IV. RESULTS

In this section the main results are presented where, initially,
the conventional ML model results are shown, as well as an
analysis of the FNNs study. Next, the results of the four
experiments will be presented. Finally, the results regarding the
comparison of the evaluation metrics used are included.
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TABLE III
EVALUATION METRICS OF MACHINE AND DEEP LEARNING MODELS.

Cymodocea nodosa Overall (mean of classes)
Model Accuracy? | Precision! Recall? ch;e 1 IoU? Accuracy? | Precision! Recall? Scf;l*e 1 ToU?
GNB 0.7728 0.1245 0.8006 0.2155 0.1208 0.8232 0.6329 0.7069 0.5901 0.4582
KNN 0.9372 0.2806 0.3907 0.3266 0.1952 0.9272 0.7482 0.6771 0.7006 0.5793
<) DT 0.9333 0.2703 0.4191 0.3286 0.1966 0.9247 0.7471 0.7018 0.7151 0.5992
= S-KNN 0.9382 0.2826 0.3803 0.3243 0.1935 0.9296 0.7560 0.7022 0.7224 0.6106
SVM 0.9541 0.3963 0.3376 0.3646 0.2230 0.9386 0.7842 0.6896 0.7296 0.6144
FNN 0.9495 0.3595 0.3784 0.3687 0.2260 0.9379 0.7723 0.7112 0.7370 0.6242
U_]X%gmh 0.9896 0.8994 0.8050 0.8496 0.7386 0.9710 0.9210 0.8784 0.8983 0.8179
3 U-]éegzvzth 0.9866 0.8516 0.7671 0.8071 0.6767 0.9726 0.9255 0.8862 0.9047 0.8317
A’(’f’ﬁ;’” 0.9840 0.7675 0.8057 | 0.7861 | 0.6476 0.9611 0.8807 0.8581 | 0.8677 | 0.7710
Pix2Pix 0.9886 0.8549 0.8283 0.8414 0.7262 0.9661 0.9094 0.8640 0.8837 0.7944
% ofé(j rTnean) 0.0681 0.5859 0.3768 0.5024 0.6677 0.0466 0.1201 0.1178 0.1374 0.1865
different models analyzed in this study. Fig. 6 (a) shows a RGB
TABLE IV representation of the WorldView-2 satellite image, as well as
OTHER METRICS OF MACHINE AND DEEP LEARNING the isobaths at 1 m resolution in depth. It should be noted that
MODELS. changes in the seabed are detected up to 15 m, which is the
Number of maximum detectable depth in this image. Figs. 6 (b) to (g)
Model Execution trainable Number of corresponds to conventional ML models, while Figs. 6 (h) to
time (min) parameters | hyperparameters (k) shows DL-based approaches. The reference bathymetry and
in GD .. . . .
the original WorldView-2 image are included for context. Color
GNB 0.03 No 2 T 1. .
codes indicate the predicted classes: Cymodocea nodosa, red
KNN 082 No 3 algae, sand, rock, and land. This visual comparison highlights
E 5 ZZT\;N (3)2; EO 4 the superior spatial consistency of DL models, particularly U-
- - 0 4 Net and Pix2Pix, in detecting seagrass patches and reducing
SVM 22.23 No 3 noise in rocky areas. In addition, as a guide to the results, the
ENN 10.19 8.7 10° 8 presence of Cymodocea nodosa is mainly present in the upper
U-Net 39.08 31.0-10° 11 central zone, as well as in the lower zone. The discussions
2 A’L’]‘i’;\g” 77.14 31.6 - 106 12 include historical maps showing Cymodocea nodosa seagrass
Pi2Pic 9494 317 10° P beds in these regions 'and the? decrease in their extent in recent
A visual inspection of Fig. 6 reveals that

The quantitative analysis, presented in Table III, examines
the different metrics in general, with the mean of all the classes,
and the Cymodocea nodosa class in particular, since it is the
class of greatest interest in the study area. Additionally, Table
IV provides supplementary parameters that facilitate a more
comprehensive comparison among the models. As can be seen,
the number of parameters between models differs. Therefore,
all comparisons are contextualized with execution time, number
of trainable parameters, and hyperparameters. In addition, all
U-Nets are restricted to three polling steps given the limited size
of the input images and the scarcity of training and validation
datasets. To obtain the results, a NVIDIA GeForce RTX 3050
Ti GPU was used. Moreover, the MATLAB's Classification
Learning Toolbox was used to implement conventional ML
models, and the PyTorch library in Python with CUDA
acceleration was used for the DL model.

On the other hand, Fig. 6 illustrates the qualitative
comparison of seabed mapping results obtained with the

years.
misclassification errors are more frequent among the vegetation
classes (Cymodocea nodosa and red filamentous algae) with
respect to the sand class, as it misclassifies the dark sand pixels.
This is due to the low reflectance of the classes in near deep
water and dark areas due to marine currents, as shown in the
central right part of the maps. These errors are more prominent
in the conventional ML models where only spectral information
is used. In contrast, the U-Net model, which has the advantage
of spatially analyzing the image, allows them to correctly
separate all classes considering the spatial distribution of
marine species, with a distinguished horizontal growth. In
addition, vegetation classes show high separability in all maps,
both in the conventional ML models and the DL model.

A. Machine Learning

Regarding the conventional ML models, initially, using the
Accuracy metric for the overall classes, the best performance
value is given by the FNN model with 93.79%. In this case, the
other models, except for GNB, show similar values, with an
absolute error of less than 1.32%. On the other hand, analyzing
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- Cymodocea nodosa

Sand
- Red filamentous algae

Deep water

Fig. 6. Qualitative comparison of the Machine and Deep Learning models: (a) WV-2 image of January 22 with the reference
isobaths up to 30 m, (b) GNB, (c) KNN, (d) DT, (e) S-KNN, (f) SVM, (g) FNN, (h) U-Net (GDL), (i) U-Net (BCE), (j) Attention
U-Net (Attention Gates in skip layers), and (k) Pix2Pix (U-Net and PatchGAN).

the Cymodocea nodosa class, it can be highlighted that SVM
presents the best Accuracy with a value of 95.41%. As in the
previous case, the rest of the models, regardless of GNB, have
similar values, with an absolute error of less than 2.08%. This
analysis can be corroborated in Fig. 6 (b) to (g), where all the
results are similar, except for GNB where a notable
overestimation is observed for the Cymodocea nodosa class. In

addition, it should be noted that the values obtained are quite
high, so their use for analysis is complex to distinguish models.

Secondly, analyzing the results of the Precision metric, the
best model is SVM, for the Cymodocea nodosa and the mean
of classes. In this case, the overall values are similar between
models, highlighting the SVM with a value of 78.42%, and an

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully ¢

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3642923

absolute error with respect to the rest of the models of less than
3.71%, except for GNB with worse values. However, using this
metric for the Cymodocea nodosa class, three groups of models
can be seen: FNN and SVM; S-KNN, DT, and KNN; and GNB.
In general, the best model is SVM with a metric value of
39.63%, with a difference of 3.68% with respect to FNN. In this
case, it is observed that the quality of the different models can
be grouped using this metric, at least in the Cymodocea nodosa
class, as well as a greater absolute difference with respect to
Accuracy, and metric values somewhat far from the maximum
value. Therefore, the use of Precision may be adequate to
distinguish results in Cymodocea nodosa.

Thirdly, the results using the Recall metric can be analyzed.
The best overall is achieved by the FNN model with a value of
71.12%. In this case, all models, including GNB, offer similar
results, with an absolute value of less than 3.41%. Analyzing
the metrics in the Cymodocea nodosa class, GNB model has a
much higher value than the rest of the metrics, with a value of
80.06%, and a very high absolute difference with respect to the
second best model, DT, of 38.15%. This value is due to the high
overestimation of Cymodocea nodosa, which can be observed
in Fig. 6 (b). Note the definition of Recall in Equation 6, where
False Negative is used. Therefore, when all the classes are
considered, similar Recall values are obtained among all
models. For this reason, the use of Recall is not advisable in the
presence of overestimation.

Finally, the IoU metric has the same structure as the
Precision and F; Score metrics, that is, in general, all the models
have similar values, except for GNB, while in the Cymodocea
nodosa class there are three groups. In this case, the best model
is FNN, with values of 62.42% in overall results, and 22.60%

in the Cymodocea nodosa class. In addition, the absolute error
among the overall, except for GNB, is 4.49%. In this case, there
is a greater difference between the models, compared to the
Precision and F; Score, so their use is advised above these two
metrics. Another fundamental aspect is that the values of the
metrics in this case are further away from the maximum of
100%, so there may be a greater linear margin of improvement
of the metric if they are analyzed with other models.

In general, the use of IoU is recommended, followed by F;
Score and Precision metrics. Additionally, the use of Accuracy
is discouraged, as well as Recall. Furthermore, with respect to
the results, it is appreciated that the FNN and SVM models are
the best Machine Learning models and offer similar results,
followed by the S-KNN, DT and KNN. Moreover, the use of
GNB is discouraged in this case.

Regarding the metrics on the computational and temporal
impact of the models, the information in Table IV can be used.
In this case, a direct relationship between execution time and
improvement in metrics can be observed, except for SVM,
which is a costly model. In this sense, the best relationship
between execution time and performance is found in the FNN
model. On the other hand, it can be observed that in all ML
models, except for the FNN, gradient descent has not been used,
but rather analytical and heuristic methods. It should be
highlighted that Sequential Minimal Optimization (SMO) was
used for the SVM model. Finally, a relationship between the
number of hyperparameters and performance can also be seen,
with the FNN being the model with the highest number of
hyperparameters.
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B. Deep Learning

Regarding the DL models, the second part of Table III
shows the best U-Net, Attention U-Net and Pix2Pix models. In
general, DL models significantly improve all the metrics
presented with respect to ML models. For the overall IoU, an
improvement over the best conventional ML model of more
than 20% is observed, with a high metric value of 0.83
approximately, indicating an excellent result. In the case of the
IoU for the Cymodocea nodosa class, the improvement is even
more remarkable, of more than 51%, with an IoU value of
~0.74. On the other hand, for the second group of metrics,
Precision and F; Score, an overall improvement of more than
14% and 16% respectively is observed, as well as an
improvement in the Cymodocea nodosa class of more than 50%
and 48% respectively. Finally, with respect to the Accuracy and
Recall metrics, improvements of more than 3% and 17%
respectively were observed in general, as well as improvements
of more than 4% and 42% for the Cymodocea nodosa class. In
the last case, it is observed that Accuracy shows less sensitivity
in comparison of the models. It is worth mentioning that the
improvement is notable in the Cymodocea nodosa class, the
species of greatest interest in the area. Furthermore, in this case
it is observed that the IoU has the highest sensitivity, since the
absolute error is greater than the rest of the metrics. In general,
it is observed that DL models improve considerably accuracy
in the studied seagrass meadows compared to the conventional
ML models.

Furthermore, with respect to the maps obtained, in Fig. 6, it
can be seen that the estimation of the classes has higher
accuracy. It is observed that Cymodocea nodosa has no noise
and is well defined. In addition, the decrease in noise is also
observed in the rocky bottoms, especially to the north, west and
south. Therefore, in this study case, the use of the DL model is
recommended in comparison with the analyzed conventional
ML models.

In particular, the basic U-Net obtains the best results, which
are very similar to the results obtained with the Pix2Pix model,
with a difference of approximately 0.0445 for IoU. Regarding
Attention U-Net, it can be observed that it is better than the ML
models, but it has the worst performance of the DL models.
Qualitatively, the same can be observed in Fig. 6, where the U-
Net model presents the highest quality map. Regarding the
metrics presented in Table IV, it can be observed that Deep
Learning models have a significantly higher number of
trainable parameters, with several orders of magnitude greater
than in conventional Machine Learning models. This suggests
more complex architectures with a greater capacity to capture
the non-linearities of the dataset. A similar trend can be seen in
execution time and the number of hyperparameters, where
Pix2Pix has the highest computational cost and complexity,
while the classic U-Net architecture is the most efficient. Given
the limitations imposed by the small size of the dataset for
benthic habitat classification, the standard U-Net appears to be
the most suitable option. An optimal relationship between
hyperparameters and efficiency is observed. However, for
larger datasets and/or images, models with more
hyperparameters should be reanalyzed. The two U-Net models,
one presenting the best overall results, and the other for the
Cymodocea nodosa class, were the results of the three
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experiments explained above. This dual presentation allows for
a more nuanced evaluation: while the overall model ensures
general robustness across all seabed types, the Cymodocea
nodosa-optimized model highlights the potential for targeted
improvements in ecologically critical classes.

Finally, in the next experiments, the IoU is used as an
analysis metric as it has a higher sensitivity to map changes.
The results of each experiment are presented below.

- Experiment 1: Loss functions and learning rates

Regarding the first experiment, different loss functions and
learning rates were analyzed, as shown in Table II. For U-Net
models, the results showed that the best models in each loss
function were BCE with LR of 0.01 obtained a general IoU of
0.85 and IoU in the Cymodocea nodosa class of 0.76; CE with
LR 0.01 obtained 0.72 and 0.58 respectively; WCE with LR
0.001 of 0.78 and 0.66; DL with LR of 0.001 obtained 0.78 and
0.67; and GDL with LR of 0.001 obtained 0.82 and 0.72
respectively. Fig. 7 shows the distribution of values to assist in
comparison.

In this case, it is observed that the best models are obtained
with GDL and BCE loss functions with differences of 3% and
4% in overall IoUs and Cymodocea nodosa class. Moreover, as
in previous studies, the overall metric is higher than for the
seagrass class. Finally, it is highlighted that the use of class
weights in the loss functions helps to contemplate class
imbalance, improving the results. This occurs both for CE, with
WCE, and DL, with GDL, so their use is recommended.
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Fig. 7. Distributions of IoU values by loss function for the U-
Net model in Experiment 1.

The same behavior occurs in the Attention U-Net model,
where the BCE and GDL loss functions obtain the best results.
In this case, for both loss functions, a learning rate of 0.0001
has been found to be optimal.

Finally, in the case of Pix2Pix, only the loss function
mentioned above has been implemented. In this case, the best
LR obtained was 0.001. This model has a hyperparameter
exclusive to its loss function, which will be analyzed in the
following experiment.

- Experiment 2: Contribution of A in generator loss for the
Pix2Pix model

Secondly, the A hyperparameter exclusive to the loss
function of the Pix2Pix model has been studied. This parameter
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controls the contribution of the L1 reconstruction loss in the
generator's loss function. From the values studied, shown in
Table II, it has been found that the lambda value 100 is optimal,
providing the best results.

- Experiment 3. Exponential scheduler of learning rate

Thirdly, the Exponential scheduler of learning rate is
applied to the best models of experiment 1. In this case, the
previous LRs are used as starting LRs and different exponential
decays (y) values are applied, as shown in Table II. Regarding
the results, the best models were in U-Net for BCE with y of
0.9995 obtaining an overall IoU of 0.84 and IoU in the
Cymodocea nodosa class of 0.77, and for GDL with y of 0.999
obtaining 0.82 and 0.75, respectively. In this case, the scheduler
applied does not seem to improve the BCE results, getting 1%
worse, which is not statistically significant. However, in the
case of GDL, improvements are observed in general, so its use
is recommended in U-Net model. On the other hand, for both
the Attention U-Net model, with BCE and GDL, and for
Pix2Pix, the use of a learning rate scheduler worsens the results,
so its use is not recommended in these cases.

- Experiment 4. L2 regularization

Finally, L2 regularization is applied on the best previous
models. For the L2 regularization, the weight decays presented
in Table II were used. For U-Net models, the results show that,
for BCE without scheduler and with a weight decay of 0.0005,
an overall IoU of 0.82 and an IoU in the Cymodocea nodosa
class of 0.74 were obtained. On the other hand, in the case of
GDL with scheduler and weight decay of 0.01, IoUs of 0.84 and
0.68 were obtained, respectively. These two models have been
the models finally chosen for U-Net model, where the rest of
the metrics are presented in Table III. It should be noted that
both models are included since GDL is better overall, while
BCE obtains the best results in Cymodocea nodosa class, that is
of greatest interest in the study.

Regarding the Attention U-Net model, it should be noted
that L2 regularization was not available in the AGs, as it
worsened the results. This may be because it can decrease the
attention capacity of the AGs, reducing the mask values. In this
case, the optimal weight decay value was 0.01 using GDL and
0.001 using BCE. For Attention U-Net, the best final result was
obtained with the GDL loss function.

Finally, regarding the Pix2Pix model, L2 regularization with
weight decay of 0.0001 was proven to achieve the best results.
Therefore, it was observed that, in general for all DL models,
the learning rate scheduler is a technique that does not always
succeed and must be studied in each particular case, while the
use of L2 regularization is recommended.

C. Evaluation metrics

As mentioned above, the IoU metric has a higher sensitivity,
so its use is recommended. In addition, the Precision and F,
Score metrics can also be recommended, although their
sensitivity is lower. However, Recall and, especially, Accuracy
metrics are not recommended in this case. To formalize this
analysis, the standard deviation values, in percentage with
respect to the mean, of the metrics are highlighted in the last
row of Table III. The values were obtained for each metric in
the different models. Regarding the results, the most sensitive
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metric, that is, the one with the highest standard deviation, is
the IoU both for the Cymodocea nodosa class and in general,
with standard deviation of 66.77% and 18.65% respectively.
Next comes the group of Precision, Recall and F; Score metrics,
where Precision has the highest sensitivity in the Cymodocea
nodosa class and F; Score in general. Finally, the extensively
used Accuracy metric is the worst by far with respect to the
other metrics and its use is discouraged in this work. As
discussed, there is a notable improvement with the use of loU,
and its use is encouraged.

V. DISCUSSIONS

In this section, two analyses are presented. Initially, the
work is discussed in relation to other works. Subsequently, the
U-Net results are used to study the temporal evolution of the
Cymodocea nodosa meadows in the area with respect to
previous studies.

A. Discussions on models and metrics

Regarding the results obtained in this work, it can be
highlighted that the use of Deep Learning, with encoder-
decoder architecture, significantly improves the results with
respect to the use of conventional and novel Machine Learning
models. It should be noted that, in this case, conventional ML
models only analyze the spectral information of each pixel
without including the spatial and spectral information of its
neighborhood. In contrast, the DL models used consider
spectral information and the morphology of the spatial object,
which may be a cause of the model improvement. Additionally,
another aspect of the enhanced results may be that DL models
have higher nonlinearity compared to the conventional ML
models [83]. In addition, with respect to ML models it is of
special interest to note that FNNs can be a competitor to the
extensive SVM model.

In addition, the performance differences observed among
conventional ML models can be attributed to their inherent
structural characteristics. For instance, GNB assumes
independence and Gaussian distributions, leading to poor
generalization. In contrast, SVM and FNN can model non-
linear boundaries more effectively, but still lack spatial context.
The superior performance of U-Net is due to its encoder-
decoder architecture with skip connections, which allows it to
capture both local textures and global spatial patterns.
Moreover, the use of convolutional layers enables the model to
learn hierarchical features, which is particularly advantageous
in heterogeneous benthic environments.

On the other hand, with respect to DL models, it is important
to note that in this study, the dataset is highly constrained,
consisting of only 51 original patches (204 after data
augmentation) extracted from a single WorldView-2 image,
with small dimensions of 70x70 pixels and 8 spectral channels.
This limited size and low spatial diversity significantly increase
the risk of overfitting, particularly for models with many
parameters. Under these conditions, the classic U-Net
architecture offers a more favorable trade-off between
complexity and generalization. Attention U-Net introduces
additional parameters through Attention Gates, which can
enhance feature selection in large and diverse datasets but may
degrade performance when data is scarce and lacks variability.
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Similarly, Pix2Pix, based on a conditional GAN framework,
requires training both a generator and a discriminator, further
increasing model complexity and sensitivity to data limitations.
This adversarial setup is powerful for generating realistic
benthic habitats maps but is highly dependent on abundant and
diverse training samples to stabilize training. In contrast, the
standard U-Net, with fewer parameters and a simpler
optimization process, is better suited for small, homogeneous
datasets, reducing the risk of overfitting while still leveraging
spatial and spectral information effectively. In addition, the
Attention U-Net and Pix2Pix models are more complex in terms
of optimal hyperparameter selection. However, it is important
to highlight that the results are much better than those of ML
models, where Pix2Pix offers very similar results to classic U-
Net. In any case, for studies with limited data, the classic U-Net
is recommended. However, if the training dataset is increased,
it should be re-evaluated, as Pix2Pix and Attention U-Net can
better leverage their potential. Finally, it would be necessary to
comment on the limitations of using DL compared to traditional
ML, where there is a larger number of hyperparameters, as well
as a greater dependence on the training data [87]. In complex
cases, where spectral separability is compromised, DL models
are of great use. However, in simpler cases, the use of
conventional ML models can provide great results.

Regarding the assessment metrics, it was concluded that the
use of IoU, as well as F; Score and Precision, are of special
interest due to their sensitivity to map changes.

To the authors' knowledge, this is the first analysis of the
best metrics for benthic habitat mapping using passive
multispectral satellite remote sensing. Of particular interest,
however, is the work of Maxwell et al. [52], where an analysis
of the impact of the use of different assessment metrics on land
classification is performed. As in this work, the use of the IoU
and F; Score was highlighted as they provide a way to
summarize the performance of the models.

B. Temporal evolution of Cymodocea nodosa meadows

To study the temporal evolution of Cymodocea nodosa
meadows in El Rio, La Graciosa, the result of the U-Net model
with the BCE loss function is used, since it has the best quality
in the studied class. Based on the result, it is concluded that, in
the study area and up to 15 meters depth, corresponding to the
maximum detectable depth in this case, the extent of
Cymodocea nodosa seagrass meadows is approximately 9.31
Ha for 2022. Other studies with in-situ data have previously
been carried out in the study area, where the 2001 and 2010
studies stand out [54]. Fig. 8(a) shows the historical maps
compared to the new distribution, where a remarkable
deterioration of the seagrass meadows can be observed.
Specifically, in 2001 there was a population of about 245.32 Ha
(blue), reduced to 48.84 Ha in 2010 (white). In this case, by
2022 only 9.31 Ha are detected (yellow), which represents a
reduction on the population of 96.2% with respect to 2001
approximately. It should be highlighted that the decline has
occurred in a period of only 21 years. On the other hand, Fig.
8(b) shows the temporal evolution of the number of hectares of
Cymodocea nodosa. In this case, if the trend continues, in the
coming years it is expected that Cymodocea nodosa will
disappear completely in the study area.
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(a)
Fig. 8. Evolution of the Cymodocea nodosa population in El Rio: (a) Comparison of the historical maps of 2001 (blue) and 2010
(white), and the new distribution of 2022 (yellow). Deep water up to 15 m is shown (black mask). (b) Temporal evolution of the
population in the study area.

Additionally, it is worth noting that, for the comparison to
be correct, the deep water pixels have been masked, as shown
in Fig. 8(a). The depth limit is a limitation in all water passive
remote sensing studies. However, it should be noted that the
Cymocodea nodosa meadows in this case are abundant in
shallow water. On the other hand, the high accuracy in the maps
generated stands out, due to the high spatial resolution of the
satellite image used.

Regarding the factors that can affect seagrass meadows
deterioration, natural effects, as well as direct anthropogenic
effects are highlighted. Natural impacts include intense marine
currents, which cause massive sediment movement and root
upwelling, and rainfall runoff, which increases water turbidity
and reduces light penetration, affecting plant photosynthesis
[88], [89].

On the other hand, anthropogenic impacts are more frequent
and severe, especially the construction of coastal infrastructures
such as ports and artificial beaches, wastewater and brine
discharges from desalination plants or potable water that
change salinity, and trawling [90]. These factors increase
turbidity, plant burial and pollution, leading to loss of habitat
and biodiversity [90]. In these aspects, the study area is
supported primarily by tourism and fishing, as well as there
have been breaks in the pipeline that transports potable water
from Lanzarote to La Graciosa [91], seriously endangering the
health of marine flora and fauna. In addition, there are plants
that can flourish with the change of water characteristics, so the
populations of Cymodocea nodosa also must deal with
competition from endemic and invasive species [92]. In this
case, filamentous red algae, present at all measurement points
in 2022, was previously not detected in the study area (2010).
Unfortunately, all the commented aspects lead to the
disappearance of historical seagrass meadows, endangering
biodiversity and ecosystem stability.
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C. Future directions

Based on the results obtained, several directions for model
improvement are suggested. Initially, when the dataset is
limited, as in this case, the Self-Supervised Learning (SSL)
technique [93] is particularly noteworthy. This approach is
based on generating robust representations by pretextual tasks,
such as predicting temporal sequences or reconstructing
images, which drastically reduces dependence on manual
annotations and improves generalization in environments with
high spatial and temporal variability. For example, [93]
demonstrates that SSL is particularly effective in scenarios with
high temporal and spatial variability, such as environmental
monitoring and multitemporal analysis. In addition, the use of
Vision Transformer (ViT) architectures [94], adaptations of
Transformers to images, may also be interesting, where images
are treated as sequences of patches. However, the impact of
reduced datasets on their performance must be carefully
studied, as these architectures often require large volumes of
data to avoid overfitting. Therefore, the use of pre-trained
models based on ViT architecture is particularly promising,
notably the Segment Anything Model (SAM) [95] and Prithvi-
EO-2.0 [96].The last one is especially interesting because it's a
trained multitemporal ViT model that also includes self-
supervised strategies on large volumes of satellite data. So, it
can be adjusted with transfer learning using minimal amounts
of labeled data, achieving near state-of-the-art performance in
tasks like segmentation and classification in complex geospatial
environments. Consequently, the integration of these
techniques and models in future studies could mitigate current
limitations arising from data limitations and improve accuracy
in benthic mapping. Additionally, more advanced DL encoder-
decoder architectures can also be implemented, such as SegNet
or DeepLabv3+, which may better capture spatial hierarchies.
Incorporating auxiliary data sources (e.g., bathymetry or
hyperspectral imagery) could enhance class separability.
Additionally, transfer learning and attention mechanisms may
improve generalization in data-scarce environments. These
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strategies could further reduce misclassification in complex
benthic habitats.

VI. CONCLUSIONS

This study presents a comprehensive comparison between
conventional Machine Learning and convolutional Deep
Learning models for mapping seagrass meadows using high-
resolution WorldView-2 satellite imagery. For this study, the
species Cymodocea nodosa in El Rio, Canary Islands, were
analyzed, and, up to the authors’ knowledge, the first dataset for
the segmentation of these meadows was generated using
WorldView-2 satellite imagery is presented.

The results obtained demonstrate that DL models, U-Net,
Attention U-Net and Pix2Pix, particularly the classic U-Net
architecture, significantly outperform conventional ML models
of Gaussian Naive Bayes (GNB), Decision Tree (DT), K-
Nearest Neighbors (KNN), Subspace KNN, Support Vector
Machine (SVM), and Feedforward Neural Network (FNN). For
example, the U-Net model with the Binary Cross-Entropy
(BCE) loss function achieved an overall Intersection over
Union (IoU) of 82% and a value of 74% specifically for
Cymodocea nodosa, improving by more than 50% the results
obtained with the best conventional ML models. This was
especially evident in the detection and segmentation of
Cymodocea nodosa, where the DL models showed a greater
ability to handle the complexity and variability of the data.

In addition, an incremental study has been carried out for the
training of the DL model, modifying the hyperparameters that
control the network, as well as different loss functions and
additional techniques, such as exponential scheduler of learning
rate and L2 regularization. In addition, further study was
conducted for the Pix2Pix model, where the hyperparameter 1
in the generator's loss function was studied. Regarding the
models, the U-Net model is recommended among the models
studied for datasets with limited sizes, as in this study.
However, the Attention U-Net and Pix2Pix models should be
studied with more extensive datasets. On the other hand, a
detailed analysis of different evaluation metrics has been
conducted, with the metrics of Accuracy, Precision, Recall, F;
Score, and Intersection over Union (IoU). The IoU metric
stands out for its high sensitivity to map changes.

The study also reveals an alarming reduction in the extent of
Cymodocea nodosa meadows in the area, representing a decline
of 96.2% over a 2l-year period. This drastic reduction
underscores the urgent need to implement conservation and
sustainable management measures.

The findings of this study highlight the importance of using
advanced DL techniques to improve the accuracy and
efficiency of seagrass mapping, thus contributing to the
conservation and management of these vital ecosystems. Also,
the usefulness of satellite remote sensing in monitoring coastal
seagrass meadows can be observed.
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