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 Abstract— Benthic communities, such as seagrass meadows, play 

a crucial environmental role in marine ecosystems and provide 

socio-economic benefits. Satellite remote sensing is currently used 

for their monitoring, and Deep Learning (DL) techniques offer 

improvements in mapping quality compared to traditional 

Machine Learning (ML). This study compares conventional ML 

and convolutional DL models for mapping Cymodocea nodosa 

meadows in El Río, Canary Islands, using WorldView-2 satellite 

imagery. An in-situ measurement campaign was conducted to 

generate an open dataset for segmentation. Evaluated models 

include Decision Trees, Gaussian Naïve Bayes, Support Vector 

Machines, K-Nearest Neighbors, Subspace KNN, Feedforward 

Neural Networks, U-Net, Attention U-Net, and Pix2Pix models. 

Results show that DL models significantly outperform 

conventional ML models in detecting Cymodocea nodosa. The best 

model (U-net) achieved an Intersection over Union (IoU) of 83% 

overall and 74% for Cymodocea nodosa, while the best ML model 

(FNN) only reached 62% and 23%, respectively. IoU was 

highlighted for its sensitivity to minor mapping changes. 

Additionally, a temporal analysis revealed a dramatic 96% 

reduction in Cymodocea nodosa coverage over 21 years, from 

245.32 ha in 2001 to 9.31 ha in 2022. This study not only compares 

conventional ML and convolutional DL techniques for benthic 

habitat mapping but also provides a valuable methodology and 

dataset for future marine ecosystem monitoring research. 

 

Index Terms—Cymodocea nodosa, machine learning, deep 

learning, seagrass mapping. 

I. INTRODUCTION 

HE ocean encompasses a complex network of 

physical, chemical, biological, and geological 

processes. Specifically, coastal marine zones are 

highly dynamic and intricate, influenced by these 

processes and significantly impacted by anthropogenic factors 

[1]. It is estimated that over 60% of the global population 

resides within 100 kilometers of the coast, making these areas 

not only ecologically but also economically and socially vital 

[2]. Coastal zones host a diverse array of habitats, including 

seagrass meadows, coral reefs, mangroves, and estuaries, which 

are home to numerous plant and animal species [3]. The 

sustainable management of these coastal areas is crucial to 
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preserving their biodiversity and ensuring they continue to 

provide essential ecological services [4]. 

Benthic communities, including seagrass meadows, corals, 

and algae, play a crucial role in aquatic ecosystems. These 

habitats provide significant ecological and socio-economic 

benefits, such as coastal protection, carbon fixation, oxygen 

production, and serve as nurseries for commercially important 

species [5], [6]. However, these ecosystems are under threat 

from anthropogenic activities and the impact of climate change, 

making their sustainable management and monitoring essential 

[7], [8]. 

Given the alarming decline of seagrass meadows and their 

ecological significance, it is necessary to implement monitoring 

strategies that are not only accurate but also scalable and cost-

effective. Traditional in-situ surveys, while highly precise, are 

limited by their high operational costs and logistical 

complexity, which makes them unsuitable for large-scale or 

frequent assessments. This limitation has driven the adoption of 

remote sensing technologies as a fundamental tool for 

environmental monitoring. Remote sensing enables the 

acquisition of consistent, repeatable, and spatially extensive 

data [9], which is critical for detecting temporal changes in 

benthic habitats. Furthermore, when combined with advanced 

computational techniques, remote sensing can provide detailed 

and timely information to support conservation and 

management decisions. 

Specifically, remote sensing has proven to be useful for 

monitoring shoreline changes, suspended matter 

concentrations, chlorophyll levels, pollutant discharges, the 

state of coastal and marine habitats and changes in bathymetry 

[10], [11], [12]. Additionally, remote sensing is used to measure 

sea surface temperature, salinity, and surface roughness. 

Despite the availability of numerous approaches for measuring 

these variables in oceanic environments (Case I waters), coastal 

waters (Case II) present unique challenges due to their 

complexity [13]. Consequently, developing reliable methods to 

characterize these environments remains a significant research 

area. 
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Technological advancements in the early 2000s, such as the 

launch of sensors like Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Medium Resolution Imaging 

Spectrometer (MERIS), enabled the study of coastal 

environments [14]. However, their spatial resolution was 

insufficient for monitoring areas close to the coastline. The 

launch of the WorldView-2 multispectral satellite in 2009 

marked a significant milestone, offering less than 2-meter 

resolution in its eight multispectral bands [15]. This satellite 

introduced an unusually high number of channels, including a 

high-penetration blue band, enhancing the monitoring 

capabilities of coastal waters up to depths of 20-30 meters [16]. 

In this context, the classification of benthic habitats is 

highlighted, allowing the detection of changes in the 

populations of seagrass meadows and sediments of the seabed 

[10]. The benthic habitats mapping using remote sensing data 

involves several challenges, such as the presence of turbulent 

water, the maximum detectable depth, or the accuracy of model 

estimates, where the choice of classification algorithms is 

critical [17]. Regarding estimation methods, conventional 

Machine Learning (ML) techniques have been traditionally 

used for seabed classification, where traditional models such as 

Decision Tree (DT) [18] and Gaussian Naïve Bayes (GNB) 

[19], common models such as Support Vector Machine (SVM) 

[20] and K-Nearest Neighbors (KNN) [21], or more advanced 

models such as the use of Ensemble Learning [22] or the 

application of Feedforward Neural Network (FNN) [21] can be 

highlighted. Among the prominent models that have 

historically been used, the SVM stands out, since it obtains 

satisfactory results even if the quantity and quality of the 

training data is not high [23]. However, with the advancement 

of techniques, FNN may also be a promising candidate. 

Nevertheless, these algorithms often classify at the pixel level 

without exploiting the surrounding spatial information [24]. 

On the other hand, Deep Learning (DL) techniques have 

recently attracted attention for their ability to exploit the 

spectral and spatial components of remotely sensed imagery 

[25]. The applications of DL methods have grown significantly 

in recent times, with diverse applications ranging from 

agriculture [26], [27], food quality [28], or medical imaging 

[29], [30], highlighting the versatility of deep learning for 

segmentation tasks. It is worth mentioning the encoder-decoder 

architectures where, from an image, a semantic segmentation is 

obtained, such as U-Net model [31]. In addition to the classic 

U-Net, variants have been proposed to improve performance in 

complex environments. For example, the use of attention 

mechanisms [32], like in the Attention U-Net model [33] that 

introduces Attention Gates (AGs) in the skip connections, 

allowing the network to focus on the most relevant regions of 

the image while suppressing irrelevant or noisy features. This 

mechanism is particularly useful in heterogeneous benthic 

habitats, where class boundaries can be subtle. 

Another relevant architecture is the conditional Generative 

Adversarial Network (cGAN) [34]. For example, the Pix2Pix 

model [35] is based on a U-Net architecture for segmentation, 

and the discriminator, known as PatchGAN, evaluates the 

realism of local patches rather than the entire image. This 

adversarial training strategy encourages the generation of more 

accurate and spatially consistent segmentation maps. 

However, despite their potential, DL models also present 

challenges, e.g. they require elaborate datasets for training, the 

fitting of hyperparameters has a higher complexity, or that there 

is a high interdependency of the results to the architecture, the 

data and the hyperparameters used [36]. Therefore, a 

comprehensive DL analysis would serve a useful purpose. 

In Table I, a review of the literature on seagrass mapping 

using satellite images is shown. The study reveals a trend 

towards using commercial platforms like WorldView-2/3 and 

open data from Sentinel-2 or Landsat satellites. Most studies 

focus on clear and shallow waters, employing classifiers such 

as DT, Naïve Bayes (NB), SVM, and KNN. In addition, the 

Maximum Likelihood Classifier (MLC) model is also 

employed, which, like GNB, is a probabilistic model based on 

Bayes’ theorem. The difference between the two is that GNB 

assumes class independence, as well as a Gaussian probability 

TABLE I 

SURVEY ON SEAGRASS CLASSIFICATION AND 

SEGMENTATION USING REMOTE SENSING IMAGERY. 

Authors Platform Models Metrics 
Maximum 

depth 

Li and 

Xiao, 2011 

[37] 

Landsat 

DT, 

NB, 

SVM 

Accuracy (86.6, 

86.8, 85.9%) 

Shallow, 

average 

depth of 

1.35 m 

Pu et al., 

2014 [38] 
Landsat MLC 

Accuracy 

(79.99%), 

Kappa (0.745) 

4 m 

Topouzelis 

et al., 2016 

[39] 

Sentinel-2 MLC 
Accuracy 

(92.3%) 
10 m 

Marcello et 

al., 2018 

[40] 

WorldView-2 
MLC, 

SVM 

Accuracy 

(86.70%, 

91.66%) 

20 m 

Traganos 

and 

Reinartz, 

2018 [41] 

Sentinel-2 SVM 
Accuracy 

(99.5%) 
16.5 m 

Bayyana et 

al., 2020 

[42] 

Sentinel-2 

RF, 

SVM, 

KNN 

Accuracy (99.0, 

96.0, 96.0%) 
20 m 

Coffer et 

al., 2020 

[43] 

WorldView-2 

and RapidEye 
DCNN 

Accuracy 

(97%) 
12 m 

Mederos-

Barrera et 

al., 2022 

[44] 

WorldView-2 

and 3 

NB, 

SVM, 

KNN,  

S-KNN 

Accuracy (89.8, 

95.2, 95.4, 

88.6%) 

25 m 

Scarpetta et 

al., 2022 

[45] 

WorldView-2 

and 3 
U-Net IoU (0.87) Shallow 

Meister and 

Qu, 2024 

[46] 

Sentinel-2 

NB, 

CART, 

SVM, 

RF 

Accuracy (65.3, 

82.5, 86.8, 

87.4%) 

Shallow, 

seagrass in 

depth less 

than 2 m 

Wang et 

al., 2024 

[47] 

Landsat 
SegNet, 

U-Net 

Accuracy (95.1, 

94.6%), 

Precision (83.8, 

77.7%), F1 

Score (0.74, 

0.69) 

Shallow, 

average 

depth less 

than 1.5 m 

* Decision Tree (DT), Naïve Bayes (NB), Support Vector Machine (SVM), 

Maximum Likelihood Classifier (MLC), Random Forest (RF), K-Nearest 

Neighbors (KNN), Subspace KNN (S-KNN), Classification and Regression 

Tree (CART), Deep Convolutional Neural Network (DCNN). 
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density function. Furthermore, Random Forest (RF) is shown 

[48], which is an application of Ensemble Learning techniques 

to DTs. On the other hand, recent works have begun exploring 

DL techniques, especially Convolutional Neuronal Networks 

(CNN) [49], where the presence of the U-Net model is 

highlighted. In addition, the widespread use of the Accuracy 

metric is noticeable, as is the recent use of the Intersection over 

Union (IoU). In this case, the need to compare different 

evaluation metrics is also apparent. 

Despite the growing use of conventional ML and DL in 

remote sensing, several limitations have been identified in the 

literature, particularly in marine environments. Traditional ML 

models, such as SVM or KNN, often rely solely on spectral 

information and may struggle to capture spatial patterns critical 

for benthic habitat mapping. On the other hand, DL models like 

U-Net, while powerful, require large, annotated datasets, are 

computationally intensive, and their performance is highly 

sensitive to hyperparameter tuning and data quality [50]. 

Moreover, DL models are often criticized for their lack of 

interpretability, which can hinder ecological understanding and 

decision-making [51]. These challenges are further exacerbated 

in optically complex coastal waters (Case II), where water 

column effects and variable turbidity can distort spectral 

signatures. As highlighted by Maxwell et al. [52], the lack of 

standardized evaluation practices and the risk of overfitting in 

DL models call for more systematic and reproducible 

methodologies. Therefore, a critical and systematic evaluation 

of these techniques is essential to guide their effective 

application in marine ecosystem monitoring. 

In light of these challenges, this work presents a 

comprehensive methodological study specifically adapted to 

the complexities of marine environments. A detailed 

comparison is conducted between multiples conventional 

Machine Learning models for pixel classification—such as 

GNB, DT, KNN, S-KNN, SVM and FNN—and Deep Learning 

models—such as U-Net, Attention U-Net, and Pix2Pix —, 

which are specifically designed for semantic segmentation. An 

incremental training strategy is proposed for the U-Net model, 

evaluating multiple loss functions, learning rates, scheduling 

techniques, and regularization methods. Additionally, a 

comparative assessment of evaluation metrics is performed to 

identify the most sensitive indicators for benthic habitat 

mapping. The main contributions of this work can be 

summarized as follows: 

• An in-situ measurement campaign was carried out 

which, to the authors' knowledge, generated the first 

database for the segmentation of Cymodocea nodosa 

meadows with WorldView-2 images. (Information 

available at https://github.com/MederosBarrera-

Antonio/CymoHub). 

• A comprehensive comparative study of conventional 

Machine Learning models and Deep Learning model is 

conducted, including an incremental analysis to identify 

techniques that enhance benthic habitat mapping. To 

the best of our knowledge, no previous studies have 

applied Attention U-Net and Pix2Pix architectures for 

seagrass mapping using multispectral satellite imagery. 

• Different evaluation metrics are analyzed to determine 

the most appropriate for benthic habitat mapping. 

This work addresses the lack of systematic comparisons 

between conventional ML and DL models for seagrass mapping 

in optically complex waters, introducing a dataset and 

evaluating multiple performance metrics to guide future 

research.  

II. AREA OF STUDY AND DATA 

A. Area of Study 

In particular, the specific study area is in the strait called El 

Río, which separates the islands of La Graciosa and Lanzarote, 

in the Canary Islands, shown in Fig. 1(b). In this region, the 

morphology of the site and the global marine currents generate 

a strong current in the strait, generally in a north-south 

direction. Fig. 1(b) shows lines of varying intensity created by 

suspended matter due to these currents, assuming non-clear 

Case II waters. It should be noted that the image presented is 

the result of extensive preprocessing, which is described in the 

methodology. In addition, another fundamental aspect is the 

depth range, which is challenging up to 15 m depth. In this case, 

the high complexity of the study area is observed. 

The study area benefits from a high level of environmental 

protection, which has contributed to the long-term stability of 

its benthic habitats. Specifically, it is part of the Chinijo 

Archipelago Marine Reserve, the largest marine reserve in the 

European Union, with a surface of 700 km² approximately. The 

region is also designated under several conservation 

frameworks: UNESCO Biosphere Reserve (since 1993), Site of 

Community Importance (SCI) and Special Area of 

 
(a) 

 
(b) 

Fig. 1. Study area: (a) El Río strait between the islands of La 

Graciosa in the north and Lanzarote in the south, Google 

Earth©, (b) WorldView-2 image on 22 January 2022. 
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Conservation (SAC) under the Natura 2000 network (since 

2001), Natural Park of the Chinijo Archipelago (since 1986), 

and Special Protection Area for Birds (SPA) (since 1994). 

These overlapping protections have significantly limited direct 

anthropogenic pressures. 

Biological objectives in this region include the monitoring 

of species and populations associated with the seabed. In 

particular, the historic underwater meadows of Cymodocea 

nodosa [53], [54], known locally in the Canary Islands as 

“sebadales”, which are of vital ecological importance and 

productivity in the area. In particular, the declaration of the SCI 

and SAC protection of the area is due to the presence of this 

species. However, the meadows are in decline. Previous studies 

in the area concluded that there was an 81% reduction in 

populations in 10 years, between 2001 and 2010 [54]. 

Therefore, monitoring the Cymodocea nodosa population is of 

great importance. On the other hand, there are also other species 

of importance in the area, such as Caulerpa prolifera and 

filamentous algae [54]. Fig. 2 shows examples of the most 

representative species in the study area. The images show that 

the population density of the marine flora is low in the study 

area, which shows the complexity of its detection using remote 

sensing. 

 

B. Satellite Data 

In this study, a very-high-resolution multispectral image 

from the WorldView-2 (WV-2) satellite of 22 January 2022 has 

been used. Fig. 1(b) shows the natural color composite of the 

chosen image. WV-2 images are composed of 8 channels 

ranging from blue to infrared, from about 400 to 1040 nm. In 

this case, the spatial resolution is 2.0 m, the Off Nadir angle is 

26.1°, and the radiometric resolution is 11-bits. 

On this image, preprocessing was initially applied to obtain 

sea surface reflectance before using it for dataset generation, 

training and map estimation. The preprocessing techniques will 

be explained in more detail in the next section. 

C. In-situ measurement campaign 

In this work, supervised models are used, so that reference 

data for training and validation of the models are necessary to 

obtain seabed maps. However, nowadays there is no openly 

available datasets that can be used for the characterization of 

Cymodocea nodosa using satellite images. For this reason, a 

campaign of in-situ measurements was initially carried out to 

characterize the seabed in the study area. Subsequently, the 

database was generated by manually segmenting the image in 

the areas where measurements exist, thus, providing, as far as 

our knowledge, the first public database with these 

characteristics. 

Regarding the in-situ campaign, it was carried out on 29 

October 2023 and consisted of filming 79 videos in different 

locations. For this purpose, an inflatable boat, a Gopro Hero 9 

camera, and a Garmin eTrex 10 Global Positioning System 

(GPS) were used. To capture the videos, the camera was 

submerged up to the seabed at each location. It should be noted 

that the GPS has the function of georeferencing the 

measurement points, as well as generating a track of the boat, 

which is useful for the analysis of the videos. Examples of 

seabed types recorded are in Fig. 2. 

The videos captured were then analyzed, classifying the 

type of substrate and the flora community on the seabed. The 

analysis highlighted the joint presence of Cymodocea nodosa 

and Caulerpa prolifera on sandy seabeds, as well as red 

filamentous algae on all types of seabeds, both sandy and rocky. 

In addition, the presence of sandy and rocky bottoms without 

vegetation was also noted. On the other hand, the presence of 

Dictyotales sp., maërl and Lobophora sp. was detected but to a 

minor extent than the previous seabed types. 

Finally, it should be noted that the satellite image used in 

this study was acquired on January 22, 2022, and the in-situ 

measurement campaign was carried out on October 29, 2023. 

In this case, it is considered that the temporal difference does 

not significantly affect the validity of the training and validation 

of the models. In this case, the waters around the Canary Islands 

experience relatively mild temperature variations, due to the 

influence of the cold Canary Current [55]. This relative thermal 

stability may contribute to less pronounced seasonal changes in 

underwater vegetation compared to regions with more extreme 

temperature shifts. In addition, the study area has multiple 

figures of environmental protection, as mentioned above, which 

has contributed to a remarkable stability of the main benthic 

habitats over time. Although changes in the distribution of some 

species, such as Cymodocea nodosa, have been detected, these 

appear to be related to long-term environmental factors, such as 

climate change, rather than direct anthropogenic impacts. In 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Examples of the flora present in the study area: (a) 

Cymodocea nodosa, (b) Caulerpa prolifera, and (c) 

filamentous red algae. 

 
Fig. 3. Distribution of database images for seabed 

characterization. 
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addition, it should be noted that the in-situ data were not used 

directly as training labels, but as a reference to perform a 

manual segmentation of the satellite image, thus ensuring 

spatial consistency with the patterns observed in the image. 

 

D. Database Generation 

Using the information from the campaign, a manual image 

segmentation was performed in the proximity of the filming 

location. Afterwards, the manual segmentation was divided into 

51 images to generate the database, as presented in Fig. 3. The 

size of each image is 70x70 pixels, or 140x140 m given the 

spatial resolution of the image (2 m). The choice of size was 

based on maximizing the surface area considering the spatial 

limitations of the camera recordings, as the camera was dropped 

to the seabed. 

On the other hand, the final classes chosen for the study 

were: Cymodocea nodosa, which is mixed to a minor extent 

with Caulerpa prolifera; filamentous red algae; sand without 

vegetation; and rock without vegetation. It is worth mentioning 

that the land class has been added, and that the rest of the classes 

are not sufficiently extensive in population to be appreciated, as 

they consist of isolated individuals. 

In addition, it can be seen in Fig. 3 that the images have been 

grouped into different zones, which correspond to the presence 

of different classes or seabeds: rock without vegetation, land 

and sand in zone 1; filamentous red algae and sand in zones 2, 

3, 6, and 9; sandy seabed in zone 4; Cymodocea nodosa in zones 

5 and 8; and rocky and sandy seabed in zone 7.  

E. Training and validation distribution 

A further fundamental aspect is the partitioning of the 

database for the generation of the training and validation 

datasets. In this case, a 70/30% distribution has been 

considered, respectively, to increase the amount of data in 

validation due to the limited number of images. 

The prior partitioning of the database into different zones is 

useful for the division, since each zone corresponds mainly to a 

predominant class, allowing to avoid overfitting by considering 

a higher class representability between the training and 

validation datasets. For this purpose, in each zone the images 

were split approximately with 70/30% proportion. In addition, 

the bathymetric gradient was also considered for the splitting. 

This aspect is also fundamental as depth affects the observed 

radiance at different wavelengths. This behavior can be 

modelled by the diffuse attenuation coefficient in the radiative 

equations. 

The images chosen for validation are 6, 10, 9, 7, 13, 17, 19, 

25, 29, 34, 37, 42, 46, and 50, using the nomenclature in Fig. 3. 

On the other hand, the remaining images correspond to the 

training dataset. Therefore, finally there is an approximate 

distribution of 72.5/27.5% that considers the distribution of 

classes and depth. 

F. Data augmentation 

Finally, it is important to note that rotations have been 

applied as data augmentation. The rotations chosen were 90º, 

180º and 270º. In addition, they have been applied to each 

training and test partition separately to avoid information 

leakage between sets. 

III. METHODOLOGY 

To ensure accuracy and reliability in mapping benthic 

habitats using passive remote sensing imagery, techniques must 

initially be applied to reduce noise on useful information. That 

is, phenomena that interfere with the observation of the very 

small amount of radiation reflected by the seafloor must be 

removed. Therefore, pre-processing techniques are applied to 

eliminate distortions caused by the satellite sensor, the 

atmosphere and the water surface [56]. 

Subsequently, seabed type maps can be obtained. In this 

case, two groups of models are studied. Firstly, Machine 

Learning models, which are based on pixel classification, where 

only the spectral information of each pixel is analyzed 

individually, without considering neighboring pixels. In this 

group, the GNB, DT, SVM, KNN and FNN models are 

compared. On the other hand, the Deep Learning U-Net, 

Attention U-Net, and Pix2Pix models are studied, based on 

image segmentation, in which, in addition to the information of 

each pixel, the neighboring spatial information is considered. In 

this case, three common experiments were carried out, 

consisting of the analysis of different loss functions and 

learning rates (LR), the study of the use of the Exponential 

scheduler for LR, and the application of L2 regularization [57]. 

In addition, an exclusive experiment was carried out for the 

Pix2Pix model, where the impact of a specific hyperparameter 

of its loss function was observed. 

Finally, the maps obtained are analyzed. In this case, the 

study of five evaluation metrics should be highlighted. Fig. 4 

presents a diagram of the aforementioned methodology. 

A. Preprocessing 

To ensure the accuracy and reliability in benthic habitat 

mapping using multispectral passive remote sensing images, 

different pre-processing steps are undertaken. As mentioned, 

the main objective is to reduce the noise generated by the 

optical medium in both downward and upward directions. For 

this purpose, atmospheric correction and sunglint correction is 

used. However, other pre-processing steps are also used, such 

as georeferencing, so that the geographic information is correct; 

masking of the study area and water, so that the presentation is 

more appropriate; and radiometric correction, to deal with 

effects inherent in the sensor capture. 

Initially, georeferencing correction is performed to address 

spatial deviations in the original WV-2 image [58]. This 

involves using reference ground points and applying a first-

order polynomial transformation. This pre-processing is crucial 

to be able to compare different maps. 

Next, the study area and water masking are addressed, with 

the objective of only retaining water pixels in the study area 

[56]. This is useful for the presentation of the results. For water 

masking, the Normalized Difference Water Index (NDWI) was 

used [59]. 

Radiometric calibration follows, converting digital numbers 

from the satellite sensor into radiance values at the top of the 

atmosphere (ToA) using the linear model of analog-to-digital 

converters [60]. The values of the linear model are based on 

metadata information provided by the IMD metadata file. This 

step ensures that the images reflect physical values accurately 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3642923

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6 

 

and avoid other banding phenomena due to different sensor 

properties. 

An atmospheric correction is then applied to correct 

atmospheric effects such as absorption or scattering. This 

process converts ToA radiance values to reflectance values at 

the bottom of the atmosphere. The Second Simulation of a 

Satellite Signal in the Solar Spectrum (6S) model [61], [62] is 

used for this correction, employing a maritime aerosol profile, 

a mid-latitude summer atmospheric profile, a clear water 

reflectance profile, a surface altitude of 0 m, as this is a marine 

application, and an Atmospheric Optimal Thickness (AOT) 

value of 0.11 retrieved from the MODIS Aqua satellite through 

NASA's Giovanni service [63]. 

Subsequently, sunglint correction is performed to mitigate 

the effect of sunlight reflecting off waves, which causes 

brightness in the images. The Hedley et al. algorithm [64], 

which uses a linear regression between visible and near-infrared 

(NIR) bands, is applied. The two independent multispectral 

sensors (MS1 and MS2) of WV-2 satellite are utilized, with 

NIR1 correcting the blue, green, and red channels, and NIR2 

correcting the coastal blue, yellow, and red edge channels. This 

avoids displacement artefacts in the image. 

Finally, it is worth mentioning that correction of the water 

column has not been applied since, as previously studied [44], 

it does not improve seabed mapping results in turbulent waters 

and notable depths, as in this case study. 

B. Mapping: conventional Machine Learning models 

Conventional ML models, which are based on the 

classification and estimation of the spectral information of each 

pixel, are the first category to be studied. In this case, ML 

models contemplated can be grouped into four approaches. 

Initially, there are the (i) traditional models, which are the GNB, 

a probabilistic model based on Bayes' rule, and the DT, a model 

based on the construction of a tree-like graph. Next, the (ii) 

conventional models, which are based on the division of the 

feature space, such as the KNN and the SVM. Subsequently, 

the model used by (iii) Ensemble Learning, Subspace KNN, is 

used. Finally, the (iv) FNN model is considered, which is 

positioned as the initial model for Deep Learning models. This 

last model is based on obtaining an artificial neural network. 

Next, the different algorithms are briefly explained. 

 

· Gaussian Naïve Bayes 

Gaussian Naïve Bayes (GNB) [65] is a probabilistic 

classification model based on Bayes’ theorem, which assumes 

conditional independence between the features. In this model, 

the feature vector 𝑋 = (𝑥1, … 𝑥𝑛) represents the spectral 

channels, and the class variable 𝑌 represents different seabed 

types. The conditional probability 𝑃(𝑦|𝑋) is proportional to the 

product of the conditional probabilities of each feature given 

the class. In GNB, the probability density function of each 

feature is assumed to be Gaussian. Maximum A Posteriori 

(MAP) estimation [66] is used to estimate the prior probability 

𝑃(𝑌) and the likelihood 𝑃(𝑥𝑖|𝑌). The Gaussian assumption 

simplifies the computation of the likelihood, making GNB a 

computationally efficient model suitable for high-dimensional 

data. 

 

 

· Decision Tree 

Decision Trees (DT) [67] are multivariate classification 

models that use conditional statements to categorize inputs into 

a finite set of outputs. The structure of a DT consists of an initial 

node (root), intermediate nodes (decision points), and final 

nodes (leaves) that represent the classification outcomes. Each 

intermediate node splits the data into subsets based on specific 

criteria, refining the classification at each level. The training 

process involves creating bifurcations to generate more 

homogeneous subsets, with the goal of increasing the 

homogeneity of each subset compared to the original dataset. 

The Gini Index (GI) [68] is commonly used to quantify the 

homogeneity of the splits. In this case, the maximum number of 

splits is set to 100.  

 

· Support Vector Machine 

Support Vector Machines (SVM) [69] are supervised 

learning models used for classification tasks. They aim to find 

the optimal hyperplane that separates different classes in the 

feature space. The SVM algorithm constructs a hyperplane or 

set of hyperplanes in a high-dimensional space, which can be 

used for classification, regression, or other tasks. For non-linear 

classification, SVMs use kernel functions to transform the 

feature space into a higher dimension where a linear separation 

is possible. In this case, the Gaussian Radial Basis Function 

(RBF) kernel is used [70]. This kernel function allows the SVM 

to create a non-linear decision boundary in the original feature 

space. 

 

· K-Nearest Neighbors 

K-Nearest Neighbors (KNN) [71] is a supervised ML 

classification method that assigns a point in the feature space to 

a group based on distance. In this method, new data is classified 

according to the group with the highest presence among the k 

nearest neighbors, where k is a hyperparameter. In this case, 10 

 
Fig. 4. Methodology for the generation of seabed type maps. 
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neighbors are chosen. Another hyperparameter is the distance 

metric used to determine the k neighbors. In this work, the 

Euclidean distance is used. For a new data point, the Euclidean 

distance to all other points is calculated, and only the k nearest 

neighbors is considered. The new data point is then classified 

based on the majority class among these neighbors, a process 

known as majority voting. 

 

· Subspace KNN 

Ensemble Learning [72] techniques are used in Machine 

Learning to reduce data variance and improve system 

performance by combining multiple models. For a new input, 

each trained model provides a result, and the final output is 

determined by voting for classification among the models’ 

outputs. Key hyperparameters include how the dataset is 

sampled and divided, and the number of subsets and models to 

train. One method for generating subsets is Random Subspace 

[73], which involves uniform sampling without replacement, 

ensuring that the intersections of generated subsets are empty, 

meaning no data points are repeated. In the context of K-

Nearest Neighbors (KNN), Random Subspace can be applied to 

create diverse training subsets, enhancing the robustness of the 

KNN model. The resulting model is Subspace KNN [74]. By 

using different subsets of features, the KNN algorithm can 

better handle variations in the data and improve classification 

accuracy. This approach helps in managing the computational 

complexity and prevents overfitting by ensuring that each 

model in the ensemble learns from a unique subset of the data. 

In this case, after a preliminary assessment, 30 models are used 

for Ensemble Learning, as well as a Subspace dimension of 5. 

 

· Feedforward Neuronal Network 

Feedforward Neural Networks (FNNs) [75] are a type of 

Artificial Neural Network (ANN) where information flows in 

one direction, from input to output, without feedback loops. An 

FNN consists of an input layer, hidden layers, and an output 

layer, with each neuron in a layer connected to all neurons in 

the next layer. The input layer receives data, hidden layers 

perform computations using activation functions like Sigmoid, 

hyperbolic tangent (Tanh), or Rectified Linear Unit (ReLU), 

and the output layer produces the final classification. Training 

involves adjusting weights to minimize error using 

backpropagation. Key hyperparameters include the number of 

hidden layers, neurons per layer, and activation functions. 

Various configurations were analyzed, showing that these 

choices significantly impact accuracy and generalization. FNNs 

are effective for tasks like image classification but require 

careful tuning and computational resources. In this case, 78 

different combinations of network sizes by modifying the 

number of hidden layers (1 to 3), and the number of neurons in 

each layer were analyzed, where the model with 3 hidden layers 

and 100, 50 and 50 neurons obtained the best results. In 

addition, the Sigmoid, TanH and ReLU activations functions 

were analyzed, and TanH obtained better results. 

 

C. Mapping: Deep Learning models 

For applications with large data dimensions, such as 

computer vision, the number of parameters in FNN models 

increases significantly. Thus, Convolutional Neural Networks 

(CNNs) [49] address this inconvenience by using convolution 

and pooling functions to reduce the number of parameters. 

Initially, CNNs used a FNN at the last stage to classify the entire 

image, which was ineffective for segmentation. Therefore, 

CNNs with encoder-decoder architecture were developed [76]. 

The encoder uses convolution to extract features, and the 

decoder uses transposed convolution to restore spatial 

dimensions, reducing the number of image channels and 

enabling effective image segmentation without an FNN. 

Additionally, other techniques were applied in DL models, such 

as attention mechanisms [32] that allow models to focus on 

more relevant parts of images. On the other hand, the use of 

generative adversarial neural networks has increased, especially 

conditional (cGAN) [34], in which a generator, such as a 

segmentation encoder-decoder network, faces a discriminator, 

where they mutually try to deceive each other by improving 

their performance in a symbiotic approach. In this case, the 

following models are implemented: U-Net [31], an encoder-

decoder CNN; Attention U-Net [33], which applies Attention 

Gates (AGs) in the skip connections of U-Net; and Pix2Pix 

[35], where the generator is a basic U-Net and the discriminator 

is a PatchGAN. 

 

· U-Net model 

A CNNs with encoder-decoder architecture widely used for 

semantic segmentation is the U-Net. In addition to the above 

aspects, U-Net also has skip connections where the image 

generated in the convolution section is copied to the 

corresponding level of the same channel depth in the transposed 

convolution section. Skip connections allow the network to 

access features at different scales. The U-Net used in this work 

is shown in Fig. 5(a), where each block refers to an image, the 

vertical size to its dimension, and the number at the top 

corresponds to the number of channels in the image. In this 

case, Attention Gates are not used. Originally, the input image 

is based on an 8-channel image, corresponding to the WV-2 

sensor. On the other hand, the output image contains 5 channels, 

corresponding to the 4 types of seabed types mentioned above, 

plus an extra one corresponding to the land. It should be noted 

that, in the segmentation, the image must be completely 

annotated. Therefore, the land pixels must be annotated in 

coastal areas, as is the case of Zone 1 (Fig. 3), even if they are 

zero due to the water mask preprocessing. 

There are many hyperparameters inherent to the network 

and its training, such as the number of convolution and pooling 

stages, the number of convolution filters, the activation 

functions, the type of pooling, the loss functions, the optimizer, 

the number of training epochs, the initialization of the weights, 

or the learning rate values [57]. Additionally, there are 

techniques that can improve the training or estimation, such as 

the application of early stopping [77], the use of scheduler for 

the learning rate [78], or the application of regularization 

techniques [79]. The high complexity of choosing optimal 

hyperparameters, compared to conventional ML models, is 

highlighted. In this case, an incremental methodology is 

applied, based on three experiments where, at each step, new 

techniques are applied to the best models of the previous 

experiment. 
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It is worth noting that there are common hyperparameters. 

Initially, the number of convolution and pooling stages has been 

reduced to 3 with respect to the original U-Net, due to the 

limitations of the spatial dimensions of the image, as well as to 

reduce the number of parameters to facilitate training. 

Remember that a limited database is available. Moreover, the 

number of convolution filters are presented in Fig. 5. In 

addition, the early stopping has been applied to avoid temporal 

divergence in training. In this case, the value of the loss function 

in the evaluation has been chosen as the metric, as well as 140 

epochs of patience to stop the training. The hyperparameters 

chosen in general for all the experiments, as well as the specific 

hyperparameters in each one, are presented in Table II. 

· Attention U-Net model  

The Attention U-Net model is an extension of the classic U-

Net that incorporates attention mechanisms in the skip 

connections between the encoder and decoder. Specifically, 

Attention Gates (AGs) are used, which allow the model to focus 

on relevant regions of the information transmitted in the skip 

connection, suppressing irrelevant or noisy activations. Instead 

of directly transferring the features from the encoder to the 

decoder, AGs filter important information based on the context 

of the regions, which improves segmentation in complex 

environments such as benthic habitats. This architecture is 

especially useful in images with high spatial variability. Fig. 

5(b) shows the structure of the AGs used in this model. It should 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Deep Learning architectures used for seagrass segmentation: (a) U-Net architecture with optional Attentions Gates (only 

used for Attention U-Net). (b) Attention Gate architecture. (c) Pix2Pix and PatchGAN discriminator architectures. 
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be noted that AGs introduce parameters to the model, 

increasing its size. 

 

· Pix2Pix model 

Pix2Pix is a deep learning model based on conditional 

Generative Adversarial Networks (cGAN), designed for image 

translation tasks such as semantic segmentation. In this 

architecture, the generator consists of a U-Net model that 

produces segmentation maps from input images, while the 

discriminator, known as PatchGAN in this case, evaluates 

whether the received segmentations are real or generated by the 

generator. The relationship between generator and 

discriminator is shown in Fig. 5(c), as well as the architecture 

of the PatchGAN used. Unlike traditional discriminators that 

evaluate the entire image, PatchGAN evaluates regions or 

patches of the image, allowing it to discover small details that 

can be produced by the generator. Training is performed 

adversarially, i.e., the generator tries to trick the discriminator 

by producing realistic segmentations, while the discriminator 

improves its ability to distinguish between real and fake maps. 

In this case, the number of network parameters is also increased, 

as an additional CNN is introduced to U-Net. Furthermore, it is 

worth mentioning that, in this case, the network 

hyperparameters are also increased, not only by PatchGAN, but 

also by the adversarial loss function. 

 

· Experiment 1: Loss functions and learning rates 

The first step in the incremental experiments is the choice of 

the loss function with the best results. The loss functions studied 

for U-Net and Attention U-Net are Binary Cross-Entropy 

(BCE) [80], Cross-Entropy (CE) [81], Weighted Cross-Entropy 

(WCE) [81], Dice Loss (DL) [82], and Generalized Dice Loss 

(GDL) [82]. In the case of the Pix2Pix model, adversarial loss 

is based on BCE, and L1 reconstruction loss functions is used 

[35]. In addition, for each loss function, different learning rates 

are used during training, as shown in Table II. To ensure a 

comprehensive exploration of the learning rate hyperparameter, 

a wide range of values was tested, including both coarse (e.g., 

0.1) and fine (e.g., 0.00001) adjustments. This strategy aimed 

to identify optimal configurations under different training 

dynamics and model sensitivities. 

Initially, for the BCE case, two different aspects should be 

noted. First, it should be highlighted that the approach is one 

versus all, i.e., BCE is applied to each class, considered as 1, 

and the rest of the classes are considered as 0. Finally, the mean 

over the classes is obtained. On the other hand, in this case, the 

sigmoid function is applied on the logit outputs of the network. 

This allows several classes to have high probabilities. The 

expression used is given as: 

 

 
𝐵𝐶𝐸 = −

1

𝐶
∑ ∑ 𝑦𝑖,𝑗 log(𝑦̂𝑖,𝑗)

𝑁

𝑗=1

𝐶

𝑖=1

+ (1 − 𝑦𝑖,𝑗) log(1 − 𝑦̂𝑖,𝑗), 

(1) 

 

where 𝑦 refers to the reference, 𝑦̂ to the estimation, 𝐶 to the 

number of classes and 𝑁 to the number of examples. 

Subsequently, CE, which is widely used, is also applied, as 

well as WCE where the results of each class are weighted. This 

avoids overfitting due to class imbalance. In this case, the 

weights are used as the normalized inverse of the frequency of 

each class. In addition, the Softmax function is applied to the 

logits output of the network, so the sum of probabilities of all 

classes is 1. The WCE expression is given below. It should be 

noted that, to obtain CE, we just arrange all the weights of each 

class 𝑤 as 1. 

 

 𝑊𝐶𝐸 = −
1

𝐶
∑ 𝑤𝑖 ∑  𝑦𝑖,𝑗 log(𝑦̂𝑖,𝑗)

𝑁

𝑗=1

𝐶

𝑖=1

. (2) 

 

On the other hand, DL and GDL loss functions are also 

studied, which, like CE and WCE, GDL is a generalization of 

DL considering class weights. In this case it is of special 

mention that the use of DL is not as widespread in the remote 

sensing literature as the rest of the loss functions. Moreover, it 

is based on the use of the Dice-Sørensen coefficient as a loss 

function. In this case, the Sofmax function is also applied on the 

logits outputs of the network. The GDL expression 

contemplates DL when the weights are all 1. 

 

 𝐺𝐷𝐿 = 1 − 2
∑ 𝑤𝑖 ∑ 𝑦𝑖,𝑗 𝑦̂𝑖,𝑗

𝑁
𝑗=1

𝐶
𝑖=1

∑ 𝑤𝑖 ∑ 𝑦𝑖,𝑗 + 𝑦̂𝑖,𝑗
𝑁
𝑗=1

𝐶
𝑖=1

. (3) 

 

Finally, it should be noted that different loss functions are 

used for the generator G (𝐿𝐺) and discriminator D (𝐿𝐷) in the 

Pix2Pix model. In the case of the discriminator (PatchGAN), 

the mean binary cross-entropy (BCE) loss is used to distinguish 

between real and fake image pairs. On the other hand, the 

generator (U-Net) is trained using the sum of the adversarial 

BCE loss (𝐿𝐺𝐴𝑁) and the L1 loss (𝐿𝐿1). The L1 loss is used as a 

reconstruction loss, encouraging the generated image to 

resemble the target image. The L1 loss is weighted by a 

hyperparameter 𝜆 to control its impact during training. 

 

 

𝐿𝐷 =
1

𝑁
∑ log(𝐷(𝑥𝑖 , 𝑦𝑖))

𝑁

𝑖=1

+ log(1 − 𝐷(𝑥𝑖 , 𝐺(𝑥𝑖))), 

(4) 

   

 

𝐿𝐺𝐴𝑁 = −
1

𝑁
∑ log (𝐷(𝑥𝑖 , 𝐺(𝑥𝑖)))

𝑁

𝑖=1

, 

𝐿𝐿1 = ∑ ∑ ∑ ∑|𝑦𝑖,𝑗,𝑘,𝑙 − 𝐺(𝑥𝑖,𝑗,𝑘,𝑙)|

𝐶

𝑙=1

𝑊

𝑘=1

𝐻

𝑗=1

𝑁

𝑖=1

, 

𝐿𝐺 = 𝐿𝐺𝐴𝑁 + 𝜆 𝐿𝐿1 

(5) 

 

where H, W, and C describe the height, width, and channels of 

the input image. 

 

· Experiment 2: Contribution of 𝜆 in generator loss 

As mentioned above, the hyperparameter 𝜆 allows modeling 

the contribution of L1 loss in the Pix2Pix model. In this case, 

several values have been tested to observe their impact on the 

generation of benthic habitat maps. The values of 𝜆 are shown 

in Table II. 

 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3642923

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10 

 

· Experiment 3: Exponential scheduler of learning rate 

With the best previous models, the application of a learning 

rate scheduler is studied to improve the result and to make a fine 

adjustment of the studied values. In this case, the Exponential 

scheduler is used where, starting from the initial learning rate 

value, its value is decreased with a negative real exponential. 

The rate of decrease is controlled by the 𝛾 factor, where its 

values are shown in Table II. 

 

· Experiment 4: L2 regularization 

Finally, with the best models with the Exponential 

scheduler, the L2 regularization [57] is applied to prevent high 

parameter values, which can improve the portability of the 

model in areas other than the training and validation zones. In 

this case, a term is added to the loss function consisting of the 

quadratic sum of the parameters. This term is multiplied by 

hyperparameter weight decay which controls the regularization. 

The chosen weight decay values are presented in Table II. 

D. Assessment of benthic mapping 

Regarding the assessment of the models, the Accuracy, 

Recall, Precision, F1 Score and Intersection over Union (IoU) 

metrics over the validation dataset are used. In this case, all 

metrics have been calculated as the average of each class, to 

observe their global behavior and avoid overfitting due to class 

imbalance. Additionally, the metrics for the Cymodocea nodosa 

class are also presented independently due to the importance of 

this seagrass species in the area. 

Regarding the metrics, as indicated in Table I, Accuracy has 

been widely used in literature. In addition, Recall, Precision, 

and F1 Score are also presented. On the other hand, IoU is 

included, which is a metric that has been recently incorporated 

extensively, especially in the specific field of artificial 

intelligence. 

The formulation of the validation metrics discussed are 

detailed below: 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 , 

 

(6) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 , 

 

(7) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , 

 

(8) 

 
𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 , 

 

(9) 

 
𝐼𝑜𝑈 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 , 

 

(10) 

where 𝑇𝑃 indicates the number of true positive pixels, 𝑇𝑁 the 

true negative pixels, 𝐹𝑃 the false positive pixels, and 𝐹𝑁 the 

false negative pixels. 

In addition to using the metrics to compare the quality of the 

models, they are compared with each other to see which metric 

is more sensitive to changes. For this purpose, the standard 

deviation, normalized to the mean value, is used for the results 

of all models for each metric. In this case, the standard deviation 

is desired to be as large as possible, since it indicates that there 

is greater variability in the results, indicating better sensitivity 

to changes in the results. 

On the other hand, other parameters have also been 

considered to standardize the comparison between models. 

These are the execution time, consisting of the combined 

training/validation and estimation time; the number of trainable 

parameters in gradient descent (GD); and the number of 

hyperparameters in the models. 

Finally, in addition to obtaining the metrics for quantitative 

analysis, the qualitative analysis of the benthic maps is done to 

analyze the portability of the model outside the training and 

validation dataset. 

IV. RESULTS 

In this section the main results are presented where, initially, 

the conventional ML model results are shown, as well as an 

analysis of the FNNs study. Next, the results of the four 

experiments will be presented. Finally, the results regarding the 

comparison of the evaluation metrics used are included. 

 

TABLE II 

DEEP LEARNING MODELS HYPERPARAMETERS. 

Hyperparameter Values 

General 

Convolution kernel 3x3 pixels 

Convolution padding 1 pixel 

Pooling Max-pooling 

Activation function ReLU 

Normalization Batch Normalization 

Optimizer Adam 

Early stopping patience 140 epochs 

Experiment 1: Loss functions and learning rates 

Loss functions for U-Net and 

Attention-U-Net 

Binary Cross-Entropy (BCE), 

Cross-Entropy (CE), 

Weighted Cross-Entropy 

(WCE), Dice Loss (DL), and 

Generalized Dice Loss (GDL) 

Loss function for Pix2Pix 
BCE for adversarial loss, and 

L1 reconstruction loss  

Learning rates 
0.1, 0.01, 0.001, 0.0001, and 

0.00001 

Experiment 2 (only for Pix2Pix):  Contribution of λ in 

generator loss 

𝜆 50, 100, 150, 200, 250 

Experiment 3: Exponential scheduler of learning rate 

Scheduler of learning rate Exponential 

Exponential decay (𝛾) 

parameter of Exponential 

scheduler 

0.9, 0.95, 0.99, 0.995, 0.999, 

0.9995, and 0.9999 

Experiment 4: L2 regularization 

Regularization L2 

Weight decays of L2 

regularization 

0.0001, 0.00025, 0.0005, 

0.00075, 0.001, 0.0025, 

0.005, 0.0075, 0.01, 0.025, 

0.05, 0.075, and 0.1 
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The quantitative analysis, presented in Table III, examines 

the different metrics in general, with the mean of all the classes, 

and the Cymodocea nodosa class in particular, since it is the 

class of greatest interest in the study area. Additionally, Table 

IV provides supplementary parameters that facilitate a more 

comprehensive comparison among the models. As can be seen, 

the number of parameters between models differs. Therefore, 

all comparisons are contextualized with execution time, number 

of trainable parameters, and hyperparameters. In addition, all 

U-Nets are restricted to three polling steps given the limited size 

of the input images and the scarcity of training and validation 

datasets. To obtain the results, a NVIDIA GeForce RTX 3050 

Ti GPU was used. Moreover, the MATLAB's Classification 

Learning Toolbox was used to implement conventional ML 

models, and the PyTorch library in Python with CUDA 

acceleration was used for the DL model. 

On the other hand, Fig. 6 illustrates the qualitative 

comparison of seabed mapping results obtained with the 

different models analyzed in this study. Fig. 6 (a) shows a RGB 

representation of the WorldView-2 satellite image, as well as 

the isobaths at 1 m resolution in depth. It should be noted that 

changes in the seabed are detected up to 15 m, which is the 

maximum detectable depth in this image. Figs. 6 (b) to (g) 

corresponds to conventional ML models, while Figs. 6 (h) to 

(k) shows DL-based approaches. The reference bathymetry and 

the original WorldView-2 image are included for context. Color 

codes indicate the predicted classes: Cymodocea nodosa, red 

algae, sand, rock, and land. This visual comparison highlights 

the superior spatial consistency of DL models, particularly U-

Net and Pix2Pix, in detecting seagrass patches and reducing 

noise in rocky areas. In addition, as a guide to the results, the 

presence of Cymodocea nodosa is mainly present in the upper 

central zone, as well as in the lower zone. The discussions 

include historical maps showing Cymodocea nodosa seagrass 

beds in these regions and the decrease in their extent in recent 

years. A visual inspection of Fig. 6 reveals that 

misclassification errors are more frequent among the vegetation 

classes (Cymodocea nodosa and red filamentous algae) with 

respect to the sand class, as it misclassifies the dark sand pixels. 

This is due to the low reflectance of the classes in near deep 

water and dark areas due to marine currents, as shown in the 

central right part of the maps. These errors are more prominent 

in the conventional ML models where only spectral information 

is used. In contrast, the U-Net model, which has the advantage 

of spatially analyzing the image, allows them to correctly 

separate all classes considering the spatial distribution of 

marine species, with a distinguished horizontal growth. In 

addition, vegetation classes show high separability in all maps, 

both in the conventional ML models and the DL model. 

 

A. Machine Learning 

Regarding the conventional ML models, initially, using the 

Accuracy metric for the overall classes, the best performance 

value is given by the FNN model with 93.79%. In this case, the 

other models, except for GNB, show similar values, with an 

absolute error of less than 1.32%. On the other hand, analyzing 

TABLE III 

EVALUATION METRICS OF MACHINE AND DEEP LEARNING MODELS. 

  Cymodocea nodosa Overall (mean of classes) 

 
Model Accuracy↑ Precision↑ Recall↑ 

F1 

Score↑ 
IoU ↑ Accuracy↑ Precision↑ Recall↑ 

F1 

Score↑ 
IoU↑ 

M
L

 

GNB 0.7728 0.1245 0.8006 0.2155 0.1208 0.8232 0.6329 0.7069 0.5901 0.4582 

KNN 0.9372 0.2806 0.3907 0.3266 0.1952 0.9272 0.7482 0.6771 0.7006 0.5793 

DT 0.9333 0.2703 0.4191 0.3286 0.1966 0.9247 0.7471 0.7018 0.7151 0.5992 

S-KNN 0.9382 0.2826 0.3803 0.3243 0.1935 0.9296 0.7560 0.7022 0.7224 0.6106 

SVM 0.9541 0.3963 0.3376 0.3646 0.2230 0.9386 0.7842 0.6896 0.7296 0.6144 

FNN 0.9495 0.3595 0.3784 0.3687 0.2260 0.9379 0.7723 0.7112 0.7370 0.6242 

D
L

 

U-Net with 

BCE 
0.9896 0.8994 0.8050 0.8496 0.7386 0.9710 0.9210 0.8784 0.8983 0.8179 

U-Net with 

GDL 
0.9866 0.8516 0.7671 0.8071 0.6767 0.9726 0.9255 0.8862 0.9047 0.8317 

Attention  

U-Net 
0.9840 0.7675 0.8057 0.7861 0.6476 0.9611 0.8807 0.8581 0.8677 0.7710 

Pix2Pix 0.9886 0.8549 0.8283 0.8414 0.7262 0.9661 0.9094 0.8640 0.8837 0.7944 

Std ↑ 

(% over mean) 
0.0681 0.5859 0.3768 0.5024 0.6677 0.0466 0.1201 0.1178 0.1374 0.1865 

TABLE IV 

OTHER METRICS OF MACHINE AND DEEP LEARNING 

MODELS. 

 Model 
Execution 

time (min) 

Number of 

trainable 

parameters 

in GD 

Number of 

hyperparameters 

M
L

 

GNB 0.03 No 2 

KNN 0.82 No 3 

DT 0.61 No 4 

S-KNN 3.64 No 4 

SVM 22.23 No 3 

FNN 10.19 8.7 · 103 8 

D
L

 

U-Net  39.08 31.0 · 106 11 

Attention 

U-Net 
77.14 31.6 · 106 12 

Pix2Pix 94.94 31.7 · 106 16 
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the Cymodocea nodosa class, it can be highlighted that SVM 

presents the best Accuracy with a value of 95.41%. As in the 

previous case, the rest of the models, regardless of GNB, have 

similar values, with an absolute error of less than 2.08%. This 

analysis can be corroborated in Fig. 6 (b) to (g), where all the 

results are similar, except for GNB where a notable 

overestimation is observed for the Cymodocea nodosa class. In 

addition, it should be noted that the values obtained are quite 

high, so their use for analysis is complex to distinguish models. 

Secondly, analyzing the results of the Precision metric, the 

best model is SVM, for the Cymodocea nodosa and the mean 

of classes. In this case, the overall values are similar between 

models, highlighting the SVM with a value of 78.42%, and an 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 

 

Fig. 6. Qualitative comparison of the Machine and Deep Learning models: (a) WV-2 image of January 22 with the reference 

isobaths up to 30 m, (b) GNB, (c) KNN, (d) DT, (e) S-KNN, (f) SVM, (g) FNN, (h) U-Net (GDL), (i) U-Net (BCE), (j) Attention 

U-Net (Attention Gates in skip layers), and (k) Pix2Pix (U-Net and PatchGAN). 
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absolute error with respect to the rest of the models of less than 

3.71%, except for GNB with worse values. However, using this 

metric for the Cymodocea nodosa class, three groups of models 

can be seen: FNN and SVM; S-KNN, DT, and KNN; and GNB. 

In general, the best model is SVM with a metric value of 

39.63%, with a difference of 3.68% with respect to FNN. In this 

case, it is observed that the quality of the different models can 

be grouped using this metric, at least in the Cymodocea nodosa 

class, as well as a greater absolute difference with respect to 

Accuracy, and metric values somewhat far from the maximum 

value. Therefore, the use of Precision may be adequate to 

distinguish results in Cymodocea nodosa. 

Thirdly, the results using the Recall metric can be analyzed. 

The best overall is achieved by the FNN model with a value of 

71.12%. In this case, all models, including GNB, offer similar 

results, with an absolute value of less than 3.41%. Analyzing 

the metrics in the Cymodocea nodosa class, GNB model has a 

much higher value than the rest of the metrics, with a value of 

80.06%, and a very high absolute difference with respect to the 

second best model, DT, of 38.15%. This value is due to the high 

overestimation of Cymodocea nodosa, which can be observed 

in Fig. 6 (b). Note the definition of Recall in Equation 6, where 

False Negative is used. Therefore, when all the classes are 

considered, similar Recall values are obtained among all 

models. For this reason, the use of Recall is not advisable in the 

presence of overestimation. 

Finally, the IoU metric has the same structure as the 

Precision and F1 Score metrics, that is, in general, all the models 

have similar values, except for GNB, while in the Cymodocea 

nodosa class there are three groups. In this case, the best model 

is FNN, with values of 62.42% in overall results, and 22.60% 

 in the Cymodocea nodosa class. In addition, the absolute error 

among the overall, except for GNB, is 4.49%. In this case, there 

is a greater difference between the models, compared to the 

Precision and F1 Score, so their use is advised above these two 

metrics. Another fundamental aspect is that the values of the 

metrics in this case are further away from the maximum of 

100%, so there may be a greater linear margin of improvement 

of the metric if they are analyzed with other models. 

In general, the use of IoU is recommended, followed by F1 

Score and Precision metrics. Additionally, the use of Accuracy 

is discouraged, as well as Recall. Furthermore, with respect to 

the results, it is appreciated that the FNN and SVM models are 

the best Machine Learning models and offer similar results, 

followed by the S-KNN, DT and KNN. Moreover, the use of 

GNB is discouraged in this case. 

Regarding the metrics on the computational and temporal 

impact of the models, the information in Table IV can be used. 

In this case, a direct relationship between execution time and 

improvement in metrics can be observed, except for SVM, 

which is a costly model. In this sense, the best relationship 

between execution time and performance is found in the FNN 

model. On the other hand, it can be observed that in all ML 

models, except for the FNN, gradient descent has not been used, 

but rather analytical and heuristic methods. It should be 

highlighted that Sequential Minimal Optimization (SMO) was 

used for the SVM model. Finally, a relationship between the 

number of hyperparameters and performance can also be seen, 

with the FNN being the model with the highest number of 

hyperparameters. 

B. Deep Learning 

Regarding the DL models, the second part of Table III 

shows the best U-Net, Attention U-Net and Pix2Pix models. In 

general, DL models significantly improve all the metrics 

presented with respect to ML models. For the overall IoU, an 

improvement over the best conventional ML model of more 

than 20% is observed, with a high metric value of 0.83 

approximately, indicating an excellent result. In the case of the 

IoU for the Cymodocea nodosa class, the improvement is even 

more remarkable, of more than 51%, with an IoU value of 

~0.74. On the other hand, for the second group of metrics, 

Precision and F1 Score, an overall improvement of more than 

14% and 16% respectively is observed, as well as an 

improvement in the Cymodocea nodosa class of more than 50% 

and 48% respectively. Finally, with respect to the Accuracy and 

Recall metrics, improvements of more than 3% and 17% 

respectively were observed in general, as well as improvements 

of more than 4% and 42% for the Cymodocea nodosa class. In 

the last case, it is observed that Accuracy shows less sensitivity 

in comparison of the models. It is worth mentioning that the 

improvement is notable in the Cymodocea nodosa class, the 

species of greatest interest in the area. Furthermore, in this case 

it is observed that the IoU has the highest sensitivity, since the 

absolute error is greater than the rest of the metrics. In general, 

it is observed that DL models improve considerably accuracy 

in the studied seagrass meadows compared to the conventional 

ML models.  

Furthermore, with respect to the maps obtained, in Fig. 6, it 

can be seen that the estimation of the classes has higher 

accuracy. It is observed that Cymodocea nodosa has no noise 

and is well defined. In addition, the decrease in noise is also 

observed in the rocky bottoms, especially to the north, west and 

south. Therefore, in this study case, the use of the DL model is 

recommended in comparison with the analyzed conventional 

ML models. 

In particular, the basic U-Net obtains the best results, which 

are very similar to the results obtained with the Pix2Pix model, 

with a difference of approximately 0.0445 for IoU. Regarding 

Attention U-Net, it can be observed that it is better than the ML 

models, but it has the worst performance of the DL models. 

Qualitatively, the same can be observed in Fig. 6, where the U-

Net model presents the highest quality map. Regarding the 

metrics presented in Table IV, it can be observed that Deep 

Learning models have a significantly higher number of 

trainable parameters, with several orders of magnitude greater 

than in conventional Machine Learning models. This suggests 

more complex architectures with a greater capacity to capture 

the non-linearities of the dataset. A similar trend can be seen in 

execution time and the number of hyperparameters, where 

Pix2Pix has the highest computational cost and complexity, 

while the classic U-Net architecture is the most efficient. Given 

the limitations imposed by the small size of the dataset for 

benthic habitat classification, the standard U-Net appears to be 

the most suitable option. An optimal relationship between 

hyperparameters and efficiency is observed. However, for 

larger datasets and/or images, models with more 

hyperparameters should be reanalyzed. The two U-Net models, 

one presenting the best overall results, and the other for the 

Cymodocea nodosa class, were the results of the three 
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experiments explained above. This dual presentation allows for 

a more nuanced evaluation: while the overall model ensures 

general robustness across all seabed types, the Cymodocea 

nodosa-optimized model highlights the potential for targeted 

improvements in ecologically critical classes. 

Finally, in the next experiments, the IoU is used as an 

analysis metric as it has a higher sensitivity to map changes. 

The results of each experiment are presented below. 

 

· Experiment 1: Loss functions and learning rates 

Regarding the first experiment, different loss functions and 

learning rates were analyzed, as shown in Table II. For U-Net 

models, the results showed that the best models in each loss 

function were BCE with LR of 0.01 obtained a general IoU of 

0.85 and IoU in the Cymodocea nodosa class of 0.76; CE with 

LR 0.01 obtained 0.72 and 0.58 respectively; WCE with LR 

0.001 of 0.78 and 0.66; DL with LR of 0.001 obtained 0.78 and 

0.67; and GDL with LR of 0.001 obtained 0.82 and 0.72 

respectively. Fig. 7 shows the distribution of values to assist in 

comparison. 

In this case, it is observed that the best models are obtained 

with GDL and BCE loss functions with differences of 3% and 

4% in overall IoUs and Cymodocea nodosa class. Moreover, as 

in previous studies, the overall metric is higher than for the 

seagrass class. Finally, it is highlighted that the use of class 

weights in the loss functions helps to contemplate class 

imbalance, improving the results. This occurs both for CE, with 

WCE, and DL, with GDL, so their use is recommended. 

 

 

Fig. 7. Distributions of IoU values by loss function for the U-

Net model in Experiment 1. 

 

The same behavior occurs in the Attention U-Net model, 

where the BCE and GDL loss functions obtain the best results. 

In this case, for both loss functions, a learning rate of 0.0001 

has been found to be optimal. 

Finally, in the case of Pix2Pix, only the loss function 

mentioned above has been implemented. In this case, the best 

LR obtained was 0.001. This model has a hyperparameter 

exclusive to its loss function, which will be analyzed in the 

following experiment. 

 

· Experiment 2:  Contribution of λ in generator loss for the 

Pix2Pix model 

Secondly, the λ hyperparameter exclusive to the loss 

function of the Pix2Pix model has been studied. This parameter 

controls the contribution of the L1 reconstruction loss in the 

generator's loss function. From the values studied, shown in 

Table II, it has been found that the lambda value 100 is optimal, 

providing the best results. 

 

· Experiment 3: Exponential scheduler of learning rate 

Thirdly, the Exponential scheduler of learning rate is 

applied to the best models of experiment 1. In this case, the 

previous LRs are used as starting LRs and different exponential 

decays (𝛾) values are applied, as shown in Table II. Regarding 

the results, the best models were in U-Net for BCE with 𝛾 of 

0.9995 obtaining an overall IoU of 0.84 and IoU in the 

Cymodocea nodosa class of 0.77, and for GDL with 𝛾 of 0.999 

obtaining 0.82 and 0.75, respectively. In this case, the scheduler 

applied does not seem to improve the BCE results, getting 1% 

worse, which is not statistically significant. However, in the 

case of GDL, improvements are observed in general, so its use 

is recommended in U-Net model. On the other hand, for both 

the Attention U-Net model, with BCE and GDL, and for 

Pix2Pix, the use of a learning rate scheduler worsens the results, 

so its use is not recommended in these cases. 

 

· Experiment 4: L2 regularization 

Finally, L2 regularization is applied on the best previous 

models. For the L2 regularization, the weight decays presented 

in Table II were used. For U-Net models, the results show that, 

for BCE without scheduler and with a weight decay of 0.0005, 

an overall IoU of 0.82 and an IoU in the Cymodocea nodosa 

class of 0.74 were obtained. On the other hand, in the case of 

GDL with scheduler and weight decay of 0.01, IoUs of 0.84 and 

0.68 were obtained, respectively. These two models have been 

the models finally chosen for U-Net model, where the rest of 

the metrics are presented in Table III. It should be noted that 

both models are included since GDL is better overall, while 

BCE obtains the best results in Cymodocea nodosa class, that is 

of greatest interest in the study. 

Regarding the Attention U-Net model, it should be noted 

that L2 regularization was not available in the AGs, as it 

worsened the results. This may be because it can decrease the 

attention capacity of the AGs, reducing the mask values. In this 

case, the optimal weight decay value was 0.01 using GDL and 

0.001 using BCE. For Attention U-Net, the best final result was 

obtained with the GDL loss function. 

Finally, regarding the Pix2Pix model, L2 regularization with 

weight decay of 0.0001 was proven to achieve the best results. 

Therefore, it was observed that, in general for all DL models, 

the learning rate scheduler is a technique that does not always 

succeed and must be studied in each particular case, while the 

use of L2 regularization is recommended. 

C. Evaluation metrics 

As mentioned above, the IoU metric has a higher sensitivity, 

so its use is recommended. In addition, the Precision and F1 

Score metrics can also be recommended, although their 

sensitivity is lower. However, Recall and, especially, Accuracy 

metrics are not recommended in this case. To formalize this 

analysis, the standard deviation values, in percentage with 

respect to the mean, of the metrics are highlighted in the last 

row of Table III. The values were obtained for each metric in 

the different models. Regarding the results, the most sensitive 
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metric, that is, the one with the highest standard deviation, is 

the IoU both for the Cymodocea nodosa class and in general, 

with standard deviation of 66.77% and 18.65% respectively. 

Next comes the group of Precision, Recall and F1 Score metrics, 

where Precision has the highest sensitivity in the Cymodocea 

nodosa class and F1 Score in general. Finally, the extensively 

used Accuracy metric is the worst by far with respect to the 

other metrics and its use is discouraged in this work. As 

discussed, there is a notable improvement with the use of IoU, 

and its use is encouraged. 

V. DISCUSSIONS 

In this section, two analyses are presented. Initially, the 

work is discussed in relation to other works. Subsequently, the 

U-Net results are used to study the temporal evolution of the 

Cymodocea nodosa meadows in the area with respect to 

previous studies. 

A. Discussions on models and metrics 

Regarding the results obtained in this work, it can be 

highlighted that the use of Deep Learning, with encoder-

decoder architecture, significantly improves the results with 

respect to the use of conventional and novel Machine Learning 

models. It should be noted that, in this case, conventional ML 

models only analyze the spectral information of each pixel 

without including the spatial and spectral information of its 

neighborhood. In contrast, the DL models used consider 

spectral information and the morphology of the spatial object, 

which may be a cause of the model improvement. Additionally, 

another aspect of the enhanced results may be that DL models 

have higher nonlinearity compared to the conventional ML 

models [83]. In addition, with respect to ML models it is of 

special interest to note that FNNs can be a competitor to the 

extensive SVM model.  

In addition, the performance differences observed among 

conventional ML models can be attributed to their inherent 

structural characteristics. For instance, GNB assumes 

independence and Gaussian distributions, leading to poor 

generalization. In contrast, SVM and FNN can model non-

linear boundaries more effectively, but still lack spatial context. 

The superior performance of U-Net is due to its encoder-

decoder architecture with skip connections, which allows it to 

capture both local textures and global spatial patterns. 

Moreover, the use of convolutional layers enables the model to 

learn hierarchical features, which is particularly advantageous 

in heterogeneous benthic environments. 

On the other hand, with respect to DL models, it is important 

to note that in this study, the dataset is highly constrained, 

consisting of only 51 original patches (204 after data 

augmentation) extracted from a single WorldView-2 image, 

with small dimensions of 70×70 pixels and 8 spectral channels. 

This limited size and low spatial diversity significantly increase 

the risk of overfitting, particularly for models with many 

parameters. Under these conditions, the classic U-Net 

architecture offers a more favorable trade-off between 

complexity and generalization. Attention U-Net introduces 

additional parameters through Attention Gates, which can 

enhance feature selection in large and diverse datasets but may 

degrade performance when data is scarce and lacks variability. 

Similarly, Pix2Pix, based on a conditional GAN framework, 

requires training both a generator and a discriminator, further 

increasing model complexity and sensitivity to data limitations. 

This adversarial setup is powerful for generating realistic 

benthic habitats maps but is highly dependent on abundant and 

diverse training samples to stabilize training. In contrast, the 

standard U-Net, with fewer parameters and a simpler 

optimization process, is better suited for small, homogeneous 

datasets, reducing the risk of overfitting while still leveraging 

spatial and spectral information effectively. In addition, the 

Attention U-Net and Pix2Pix models are more complex in terms 

of optimal hyperparameter selection. However, it is important 

to highlight that the results are much better than those of ML 

models, where Pix2Pix offers very similar results to classic U-

Net. In any case, for studies with limited data, the classic U-Net 

is recommended. However, if the training dataset is increased, 

it should be re-evaluated, as Pix2Pix and Attention U-Net can 

better leverage their potential. Finally, it would be necessary to 

comment on the limitations of using DL compared to traditional 

ML, where there is a larger number of hyperparameters, as well 

as a greater dependence on the training data [87]. In complex 

cases, where spectral separability is compromised, DL models 

are of great use. However, in simpler cases, the use of 

conventional ML models can provide great results. 

Regarding the assessment metrics, it was concluded that the 

use of IoU, as well as F1 Score and Precision, are of special 

interest due to their sensitivity to map changes.  

To the authors' knowledge, this is the first analysis of the 

best metrics for benthic habitat mapping using passive 

multispectral satellite remote sensing. Of particular interest, 

however, is the work of Maxwell et al. [52], where an analysis 

of the impact of the use of different assessment metrics on land 

classification is performed. As in this work, the use of the IoU 

and F1 Score was highlighted as they provide a way to 

summarize the performance of the models. 

B. Temporal evolution of Cymodocea nodosa meadows 

To study the temporal evolution of Cymodocea nodosa 

meadows in El Río, La Graciosa, the result of the U-Net model 

with the BCE loss function is used, since it has the best quality 

in the studied class. Based on the result, it is concluded that, in 

the study area and up to 15 meters depth, corresponding to the 

maximum detectable depth in this case, the extent of 

Cymodocea nodosa seagrass meadows is approximately 9.31 

Ha for 2022. Other studies with in-situ data have previously 

been carried out in the study area, where the 2001 and 2010 

studies stand out [54]. Fig. 8(a) shows the historical maps 

compared to the new distribution, where a remarkable 

deterioration of the seagrass meadows can be observed. 

Specifically, in 2001 there was a population of about 245.32 Ha 

(blue), reduced to 48.84 Ha in 2010 (white). In this case, by 

2022 only 9.31 Ha are detected (yellow), which represents a 

reduction on the population of 96.2% with respect to 2001 

approximately. It should be highlighted that the decline has 

occurred in a period of only 21 years. On the other hand, Fig. 

8(b) shows the temporal evolution of the number of hectares of 

Cymodocea nodosa. In this case, if the trend continues, in the 

coming years it is expected that Cymodocea nodosa will 

disappear completely in the study area. 
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Additionally, it is worth noting that, for the comparison to 

be correct, the deep water pixels have been masked, as shown 

in Fig. 8(a). The depth limit is a limitation in all water passive 

remote sensing studies. However, it should be noted that the 

Cymocodea nodosa meadows in this case are abundant in 

shallow water. On the other hand, the high accuracy in the maps 

generated stands out, due to the high spatial resolution of the 

satellite image used. 

Regarding the factors that can affect seagrass meadows 

deterioration, natural effects, as well as direct anthropogenic 

effects are highlighted. Natural impacts include intense marine 

currents, which cause massive sediment movement and root 

upwelling, and rainfall runoff, which increases water turbidity 

and reduces light penetration, affecting plant photosynthesis 

[88], [89]. 

On the other hand, anthropogenic impacts are more frequent 

and severe, especially the construction of coastal infrastructures 

such as ports and artificial beaches, wastewater and brine 

discharges from desalination plants or potable water that 

change salinity, and trawling [90]. These factors increase 

turbidity, plant burial and pollution, leading to loss of habitat 

and biodiversity [90]. In these aspects, the study area is 

supported primarily by tourism and fishing, as well as there 

have been breaks in the pipeline that transports potable water 

from Lanzarote to La Graciosa [91], seriously endangering the 

health of marine flora and fauna. In addition, there are plants 

that can flourish with the change of water characteristics, so the 

populations of Cymodocea nodosa also must deal with 

competition from endemic and invasive species [92]. In this 

case, filamentous red algae, present at all measurement points 

in 2022, was previously not detected in the study area (2010). 

Unfortunately, all the commented aspects lead to the 

disappearance of historical seagrass meadows, endangering 

biodiversity and ecosystem stability. 

 

C. Future directions 

Based on the results obtained, several directions for model 

improvement are suggested. Initially, when the dataset is 

limited, as in this case, the Self-Supervised Learning (SSL) 

technique [93] is particularly noteworthy. This approach is 

based on generating robust representations by pretextual tasks, 

such as predicting temporal sequences or reconstructing 

images, which drastically reduces dependence on manual 

annotations and improves generalization in environments with 

high spatial and temporal variability. For example, [93] 

demonstrates that SSL is particularly effective in scenarios with 

high temporal and spatial variability, such as environmental 

monitoring and multitemporal analysis. In addition, the use of 

Vision Transformer (ViT) architectures [94], adaptations of 

Transformers to images, may also be interesting, where images 

are treated as sequences of patches. However, the impact of 

reduced datasets on their performance must be carefully 

studied, as these architectures often require large volumes of 

data to avoid overfitting. Therefore, the use of pre-trained 

models based on ViT architecture is particularly promising, 

notably the Segment Anything Model (SAM) [95] and Prithvi-

EO-2.0 [96].The last one is especially interesting because it's a 

trained multitemporal ViT model that also includes self-

supervised strategies on large volumes of satellite data. So, it 

can be adjusted with transfer learning using minimal amounts 

of labeled data, achieving near state-of-the-art performance in 

tasks like segmentation and classification in complex geospatial 

environments. Consequently, the integration of these 

techniques and models in future studies could mitigate current 

limitations arising from data limitations and improve accuracy 

in benthic mapping.  Additionally, more advanced DL encoder-

decoder architectures can also be implemented, such as SegNet 

or DeepLabv3+, which may better capture spatial hierarchies. 

Incorporating auxiliary data sources (e.g., bathymetry or 

hyperspectral imagery) could enhance class separability. 

Additionally, transfer learning and attention mechanisms may 

improve generalization in data-scarce environments. These 

 

 

(a) (b) 

Fig. 8.  Evolution of the Cymodocea nodosa population in El Rio: (a) Comparison of the historical maps of 2001 (blue) and 2010 

(white), and the new distribution of 2022 (yellow). Deep water up to 15 m is shown (black mask). (b) Temporal evolution of the 

population in the study area. 
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strategies could further reduce misclassification in complex 

benthic habitats. 

VI. CONCLUSIONS 

This study presents a comprehensive comparison between 

conventional Machine Learning and convolutional Deep 

Learning models for mapping seagrass meadows using high-

resolution WorldView-2 satellite imagery. For this study, the 

species Cymodocea nodosa in El Río, Canary Islands, were 

analyzed, and, up to the authors’ knowledge, the first dataset for 

the segmentation of these meadows was generated using 

WorldView-2 satellite imagery is presented. 

The results obtained demonstrate that DL models, U-Net, 

Attention U-Net and Pix2Pix, particularly the classic U-Net 

architecture, significantly outperform conventional ML models 

of Gaussian Naïve Bayes (GNB), Decision Tree (DT), K-

Nearest Neighbors (KNN), Subspace KNN, Support Vector 

Machine (SVM), and Feedforward Neural Network (FNN). For 

example, the U-Net model with the Binary Cross-Entropy 

(BCE) loss function achieved an overall Intersection over 

Union (IoU) of 82% and a value of 74% specifically for 

Cymodocea nodosa, improving by more than 50% the results 

obtained with the best conventional ML models. This was 

especially evident in the detection and segmentation of 

Cymodocea nodosa, where the DL models showed a greater 

ability to handle the complexity and variability of the data. 

In addition, an incremental study has been carried out for the 

training of the DL model, modifying the hyperparameters that 

control the network, as well as different loss functions and 

additional techniques, such as exponential scheduler of learning 

rate and L2 regularization. In addition, further study was 

conducted for the Pix2Pix model, where the hyperparameter 𝜆 

in the generator's loss function was studied. Regarding the 

models, the U-Net model is recommended among the models 

studied for datasets with limited sizes, as in this study. 

However, the Attention U-Net and Pix2Pix models should be 

studied with more extensive datasets. On the other hand, a 

detailed analysis of different evaluation metrics has been 

conducted, with the metrics of Accuracy, Precision, Recall, F1 

Score, and Intersection over Union (IoU). The IoU metric 

stands out for its high sensitivity to map changes. 

The study also reveals an alarming reduction in the extent of 

Cymodocea nodosa meadows in the area, representing a decline 

of 96.2% over a 21-year period. This drastic reduction 

underscores the urgent need to implement conservation and 

sustainable management measures. 

The findings of this study highlight the importance of using 

advanced DL techniques to improve the accuracy and 

efficiency of seagrass mapping, thus contributing to the 

conservation and management of these vital ecosystems. Also, 

the usefulness of satellite remote sensing in monitoring coastal 

seagrass meadows can be observed. 
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