Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154906
Campo DC Valoridioma
dc.contributor.authorLópez González, Néstoren_US
dc.contributor.authorRodríguez Barrera, Eduardo Miguelen_US
dc.contributor.authorGreiner Sánchez, David Juanen_US
dc.date.accessioned2026-01-13T07:34:00Z-
dc.date.available2026-01-13T07:34:00Z-
dc.date.issued2025en_US
dc.identifier.issn1999-4893en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/154906-
dc.description.abstractSurrogate models are widely used in science and engineering to approximate other methods that are usually computationally expensive. Here, artificial neural networks (ANNs) are employed as surrogate regression models to approximate the finite element method in the problem of structural analysis of steel frames. The focus is on a multi-objective neural architecture search (NAS) that minimizes the training time and maximizes the surrogate accuracy. To this end, several configurations of the non-dominated sorting genetic algorithm (NSGA-II) are tested versus random search. The robustness of the methodology is demonstrated by the statistical significance of the hypervolume indicator. Non-dominated solutions (consisting of the set of best designs in terms of accuracy for each training time or in terms of training time for each accuracy) reveal the importance of multi-objective hyperparameter tuning in the performance of ANNs as regression surrogates. Non-evident optimal values were attained for the number of hidden layers, the number of nodes per layer, the batch size, and alpha parameter of the Leaky ReLU transfer function. These results are useful for comparing with state-of-the-art ANN regression surrogates recently attained in the recent structural engineering literature. This approach facilitates the selection of models that achieve the optimal balance between training speed and predictive accuracy, according to the specific requirements of the application.en_US
dc.languageengen_US
dc.relation.ispartofAlgorithmsen_US
dc.sourceAlgorithms[EISSN 1999-4893],v. 18 (12), (Diciembre 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherArtificial Neural Networksen_US
dc.subject.otherFramesen_US
dc.subject.otherHyperparameter Tuningen_US
dc.subject.otherMulti-Objective Optimizationen_US
dc.subject.otherNeural Architecture Searchen_US
dc.subject.otherStructural Optimizationen_US
dc.subject.otherSurrogate Modelen_US
dc.titleA Multi-Objective Evolutionary Computation Approach for Improving Neural Network-Based Surrogate Models in Structural Engineeringen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/a18120754en_US
dc.identifier.scopus105025880605-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-2701-2971-
dc.contributor.orcid0000-0002-4132-7144-
dc.contributor.authorscopusid60257077800-
dc.contributor.authorscopusid7401953314-
dc.contributor.authorscopusid56268125800-
dc.identifier.eissn1999-4893-
dc.identifier.issue12-
dc.relation.volume18en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,513
dc.description.sjrqQ2
dc.description.esciESCI
dc.description.miaricds9,6
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0002-2701-2971-
crisitem.author.orcid0000-0002-4132-7144-
crisitem.author.parentorgIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.parentorgIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.parentorgIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.fullNameLópez González, Néstor-
crisitem.author.fullNameRodríguez Barrera, Eduardo Miguel-
crisitem.author.fullNameGreiner Sánchez, David Juan-
Colección:Artículos
Adobe PDF (2,08 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.