
Academic Editor: Massimiliano

Caramia

Received: 31 October 2025

Revised: 24 November 2025

Accepted: 25 November 2025

Published: 28 November 2025

Citation: López-González, N.;

Rodríguez, E.; Greiner, D. A Multi-

Objective Evolutionary Computation

Approach for Improving Neural

Network-Based Surrogate Models in

Structural Engineering. Algorithms

2025, 18, 754. https://doi.org/

10.3390/a18120754

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

A Multi-Objective Evolutionary Computation Approach for
Improving Neural Network-Based Surrogate Models in
Structural Engineering
Néstor López-González, Eduardo Rodríguez and David Greiner *

Institute of Intelligent Systems and Numerical Applications in Engineering (SIANI), University of Las Palmas de
Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain; nestor.lopez@ulpgc.es (N.L.-G.);
eduardo.rodriguez@ulpgc.es (E.R.)
* Correspondence: david.greiner@ulpgc.es

Abstract

Surrogate models are widely used in science and engineering to approximate other methods
that are usually computationally expensive. Here, artificial neural networks (ANNs)
are employed as surrogate regression models to approximate the finite element method
in the problem of structural analysis of steel frames. The focus is on a multi-objective
neural architecture search (NAS) that minimizes the training time and maximizes the
surrogate accuracy. To this end, several configurations of the non-dominated sorting
genetic algorithm (NSGA-II) are tested versus random search. The robustness of the
methodology is demonstrated by the statistical significance of the hypervolume indicator.
Non-dominated solutions (consisting of the set of best designs in terms of accuracy for each
training time or in terms of training time for each accuracy) reveal the importance of multi-
objective hyperparameter tuning in the performance of ANNs as regression surrogates.
Non-evident optimal values were attained for the number of hidden layers, the number of
nodes per layer, the batch size, and alpha parameter of the Leaky ReLU transfer function.
These results are useful for comparing with state-of-the-art ANN regression surrogates
recently attained in the recent structural engineering literature. This approach facilitates the
selection of models that achieve the optimal balance between training speed and predictive
accuracy, according to the specific requirements of the application.

Keywords: surrogate model; artificial neural networks; multi-objective optimization;
structural optimization; frames; neural architecture search; hyperparameter tuning

1. Introduction
Solving real-world problems through computational engineering often requires a high

computational time, even with increasingly efficient computers. Among the methods to
reduce computational time and/or the number of evaluations of the objective function for
improving optimal design in engineering using metaheuristics/evolutionary algorithms,
we can fundamentally list the use of parallel evolutionary algorithms, the use of surrogate
models or metamodels, and the use of game theory-based evolutionary algorithms [1].
This manuscript focuses on the second of these methods: efficient surrogate modeling is
handled, particularly in the context of structural engineering and regression surrogate
modeling, through artificial neural networks.

The application of neural networks in the calculation and optimization of skeletal
structures is a field that was started some thirty years ago, as can be seen in references [2–4].

Algorithms 2025, 18, 754 https://doi.org/10.3390/a18120754

https://doi.org/10.3390/a18120754
https://doi.org/10.3390/a18120754
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-2701-2971
https://orcid.org/0000-0002-4132-7144
https://doi.org/10.3390/a18120754
https://www.mdpi.com/article/10.3390/a18120754?type=check_update&version=1


Algorithms 2025, 18, 754 2 of 20

However, the recent surge in deep learning [5] and surrogate-based evolutionary algo-
rithms [6] has recently fostered the research for enhancing single and multi-objective opti-
mization [7] in real-world applications through surrogate-based evolutionary algorithms
in many engineering fields, such as biomedical engineering [8], reliability engineering [9],
and others [10]. In the field of structural engineering, ref. [11] proposes a single neural
network architecture based on iterative tuning for the construction of a surrogate model.
However, it does not provide details on the number of trials performed. In this case, the
model is applied to the problem of reinforced concrete rigid node bar structures and had a
six-layer hidden architecture with 128 neurons in the first two layers and 64 neurons in the
last four layers. In ref. [12,13], surrogate models based on neural networks are proposed
for an offshore wind turbine metal support bar structure. In the first case [12], 28 neural
network architectures are tested, with possible combinations of one to four hidden layers
and a uniform number of neurons per hidden layer of 10, 25, 50, 75, 100, 125 and 150. In
the second case [13], only seven neural network architectures are tested consisting of 2, 3, 4,
5, 6, 7, 8 hidden layers and 100, 150, 200, 250, 300, 350, 400 neurons per layer, respectively.
Whether detailing and proposing a single architecture or proposing even a limited set of
architectures for the neural network-based surrogate model, there is scope to improve
the performance of the surrogate if an optimization procedure is handled to improve the
architecture and/or hyperparameters of the neural network.

The enhancement of the neural network architecture and parameters has been handled
through the procedure known as Neural Architecture Search (NAS) [14,15]. The most
commonly used algorithms for NAS are reinforcement learning, Bayesian optimization,
and evolutionary algorithms/metaheuristics, with the latter being employed successfully in
multi-objective optimization approaches. In single-objective NAS, where the minimization
of error (or alternatively the maximization of accuracy) is typically sought, the complexity
of the neural network (or the computational training time required) is not a factor that is
taken into consideration. Conversely, within the paradigm of multi-objective optimization,
a secondary objective function is incorporated, namely training time, as elucidated in
this study. This enables the identification of a set of non-dominated solutions, signifying
the attainment of the ANN architecture that corresponds to the optimal accuracy for a
specific training time. Alternatively, this approach facilitates the identification of the ANN
architecture that attains the lowest training time for a given level of accuracy. The extant
literature on the use of neural networks as surrogate models/metamodels in structural
engineering has recently been augmented with the incorporation of four recent reviews,
which are indicative of the growing interest in this field of research [16–19]. It is evident
from the research undertaken to the best of the authors’ knowledge that this work is
pioneering in its proposal, implementation, and successful demonstration of a multi-
objective NAS in the field of structural engineering. A comprehensive survey of the
literature reveals no previous suggestion or successful application of a multi-objective NAS
in this area. The conflicting objectives are commonly related to the accuracy of the surrogate
model accuracy and the efficiency of the hardware [20,21], although the complexity of the
neural network is also considered (the number of parameters is frequently taken into
account). In this manuscript, the conflicting objectives are related to improving first,
surrogate model accuracy and second, surrogate model calculation speed.

This work focuses on enhancing efficient neural network-based surrogate models. A
multi-objective approach using evolutionary algorithms is proposed for the improvement
of surrogate models in bar element structures. This approach aims to produce models that
are as accurate as possible (being able to faithfully reproduce the associated numerical
method) and simultaneously as fast as possible (training/calculation time of the surrogate
model as short as possible). To this end, this work employs a state-of-the-art multi-objective



Algorithms 2025, 18, 754 3 of 20

evolutionary algorithm based on the Pareto dominance criterion (the non-dominated
sorting genetic algorithm NSGA-II [22]) and a surrogate deep learning model using artificial
neural networks. The field of multi-objective optimization is still an active research field
(e.g., some recent multi-objective algorithms are proposed in [23,24]). As example, the
PlatEMO framework [25] available in (https://github.com/BIMK/PlatEMO, accessed on
31 October 2025), currently has (release 4.13) more than 300 multi-objective evolutionary
algorithms. For this research, the state-of-the art multi-objective evolutionary algorithm
NSGA-II was chosen because it is the most used and cited algorithm and still a state-of-
the-art approach for solving optimization problems with two objectives [26], as it is the
handled problem.

From a database of thousands of structures, the results successfully demonstrate the
application of the methodology in a reference test case from the scientific literature of frame
steel structures [27]. They provide a set of non-dominated solutions with optimal accuracy
and computational time, as well as useful insights about the hyperparameters of the neural
network-based surrogate model.

The structure of the manuscript continues as follows: Section 2 presents the structural
problem and test case. Section 3 then introduces the multi-objective optimization NAS
approach, as well as the structure and configuration of the neural networks used. Section 4
presents the experimental results and discussion. Finally, Section 5 presents the conclusions.

2. Structural Engineering Problem and Test Case
The goal of the structural problem addressed is an optimal design problem where we

want to obtain the lowest weight (equivalently mass) structure, which in turn can fulfill the
mission for which it was designed. This mission consists of resisting the loads to which it
is subjected without reaching the ultimate and serviceability limit states; that is, without
exceeding the maximum constraints related to the limit stresses of the material and the
limit deformations, both established in the regulations.

Usually, these evaluations of stress and displacements are carried out using a finite
element method, which will be described in Section 2.1. Some considerations about skeletal
frame structures are shown in Section 2.2. Finally, the handled test case is described in
Section 2.3.

2.1. Finite Element Method

Structural calculation involves solving a finite element model (FEM) [28] with Hermite
approximation functions and its associated system of linear equations.

In the flat case (as is the test case to be solved) each node has three degrees of freedom
in displacement: horizontal, vertical, and rotation, in addition to three types of associated
force: horizontal force, vertical force, and moment. The vectors of forces (F) and displace-
ments (U) are related through the stiffness matrix (K): F = KU. This matrix K depends on
the geometrical properties of the section and the material properties and is created by an
assembly process from each element (member) of the structure. To reduce the bandwidth
of the matrix and consequently its calculation time, the inverse Cuthill–McKee renum-
bering method is applied, after which the system of equations is solved, obtaining the
displacements of the nodes. From these, the stresses in any section of the structure can
be calculated.

The next step is to obtain, by applying the direct method of stiffness described above,
from the definition of the design variables of a skeletal structure (positions of the nodes,
connectivity of the members, geometry of the section of each member, loads to which it is
subjected, links, material), the weight/mass, and the values of stresses and displacements.

https://github.com/BIMK/PlatEMO


Algorithms 2025, 18, 754 4 of 20

Finally, after calculating the stresses and displacements with FEM, they are compared
with the limit values established for stresses (for each bar) and displacements (for certain
specified nodes). If any of these are exceeded, their value is added to the violation of the
global constraint, which is the value to be predicted by the surrogate model.

2.2. Skeletal Frame Structures

The geometrical properties of the cross-section that influence the calculation of stresses
and strains explained in the previous section depend on the type of structure considered.

In the case of structures with articulated nodes (trusses), they are characterized by
having loads only at the nodes and not resisting moments, and only the cross-section area is
required. In the case of member structures with rigid nodes (frames), as is the test case to be
solved, where the nodes between the members are rigid and moments must be considered,
more geometrical magnitudes of the member must be considered in the calculation. In
addition to the area, other magnitudes such as the section modulus, the section height ratio,
and the moment of inertia must be considered.

In the design of structures in the real world, standardized cross-sections are used and
are included in databases [29] listed by cross-section shapes such as IPE in Europe or S in
America (I-shaped sections), HEB in Europe, or W in America (H-shaped sections).

2.3. Test Case

The test case handled in this article is based on the one published in [30], which deals
with the optimization of continuous sections. This test case is utilized as a reference test
case in the optimization of steel structures with rigid nodes by means of evolutionary
algorithms from [27], considering normalized cross-sections (discrete variables), as useful
in the real engineering case. It is a four-bar structure subjected to loads and geometry
(dimensions in meters), as described in Figure 1.

Figure 1. Test case. Frame structure dimensions and loads (lengths in meters; loads in T/m).

The density and modulus of elasticity correspond to the values of standard structural
steel as follows: 7850 kg/m3 and 2.1 × 105 MPa, respectively. A maximum displacement
at the midpoint of the longest beam (bar numbered 2 in Figure 1) of its length divided by
300 is also considered. All bars belonging to the IPE type, from IPE-080 to IPE-600 (eighteen
types), with allowable stresses of 240 MPa, are considered.

All the data described above (design parameters) are necessary for the calculation
of the structure as explained in previous subsections. In the case of the discrete sizing
optimization problem, the design variables are exclusively the type of cross-section of
each of the four members of the frame. These indices will be considered as input data
of the surrogate model, with the value of the constraints of the problem (stresses and
displacements) being its output. The description of the surrogate model is presented in the
following section.



Algorithms 2025, 18, 754 5 of 20

3. Artificial Neural Network Surrogate Model and Neural
Architecture Search
3.1. Mathematical Description

In this section, the definition of the multi-objective optimization problem (Section 3.1)
and the neural network (Section 3.2) were introduced.

3.1.1. Definition of the Multi-Objective Optimization Problem

The need to minimize objective functions F1(x) and F2(x) through the set of decision
variables x(t) = {x1, x2, x3, x4}.

The multi-objective optimization problem consists of optimizing two objective func-
tions simultaneously, which are conflicting:

min [F1(x), F2(x)], being F(x) the vector of objective functions,

where

- F1(x) is the training time of the artificial neural network model (in minutes)
- F2(x) is the lowest validation loss obtained during the training process
- x1 is the number of hidden layers
- x2 is the number of nodes per layer
- x3 is the batch size
- x4 is the alpha parameter of the Leaky ReLU activation function

The problem addressed in this work involves two objective functions to be minimized,
without any constraints.

3.1.2. Neural Network

In this work a deep neural network of fully connected perceptrons is proposed, based
on the following definitions: perceptron, neural network via forward propagation, Leaky
ReLU activation function, and mean squared error loss function.

Perceptron: The perceptron is the basic mathematical model of an artificial neuron.
Given an input vector x ∈ Rd, a weight vector w ∈ Rd, and a bias term b ∈ Rd, the
perceptron computes:

z = wT x + b

h = ϕ(z)

where ϕ(·) is the non-linear activation function (Leaky ReLU). The perceptron therefore
applies a linear transformation followed by non-linearity.

Neural Network via Forward Propagation: Stacking multiple perceptrons arranged in
layers can lead to the construction of a deep neural network. Let the network consist of L
layers; the network input is defined as:

h(0) = x

For each layer l = 1, 2, . . ., L:

z(l) = W(l) h(l − 1) + b(l)

h(l) = ϕ(z(l))

where W(l) and b(l) are, respectively, the weights and the biases of layer l.
The final output of the network is:

ŷ = h(L)



Algorithms 2025, 18, 754 6 of 20

This sequential computation contributes the forward pass.
Leaky ReLU Activation function: The Leaky ReLU activation function mitigates the

“dying ReLU” problem by allowing a small, non-zero gradient for negative inputs. It is
defined as:

ϕ(z) =

{
z i f z ≥ 0

αz i f z < 0
→ being α > 0

Its derivative, used during gradient-based optimization, is:

ϕ′(z) =
{

1 i f z ≥ 0
α i f z < 0

Loss Function: Mean Squared Error (MSE): Given a dataset {(xi, yi)} ∀i∈{1, . . ., n}, the
output of the network for input xi is ŷi = f(xi; θ), where θ denotes all network parameters.
The MSE loss is defined as:

L(θ) =
1
n

n

∑
i=1

(yi − ŷi)
2

Training the network consists of minimizing L(θ) with respect to the parameters
θ = {W(l), b(l)}.

3.2. Methods: Multiobjective NAS in Structural Engineering

For the structural calculation surrogate models, fully connected ANNs are employed
(Figure 2). These models take as input the structural cross-section types, each characterized
by their cross-sectional area and moment of inertia, as specified in Table 1. The multilayer
perceptron architecture has been selected on the basis of its prevalence in the extant lit-
erature, which has been reviewed in order to ascertain its use as a surrogate model for
structural skeletal problems (for regression approximation of the finite element method of
the structural constraints as stresses or displacements). It is acknowledged that alternative
architectures are beginning to emerge (e.g., CNNs or graph-based models; see [18,19]);
however, the multiobjective NAS approach introduced here for structural engineering
could be tested in those other architectures in the future.

Figure 2. Structure of the fully connected artificial neural network in this work; input layer (yellow),
hidden layers (green) and output layer (cyan); where HL: number of hidden layers; NPL: number of
neurons per layer.



Algorithms 2025, 18, 754 7 of 20

Table 1. Area and moment of inertia values of each IPE cross-section type.

Index Profile Area (cm2) Moment of Inertia (cm4)

1 IPE080 7.6 80.14

2 IPE100 10.3 171

3 IPE120 13.2 318

4 IPE140 16.4 541

5 IPE160 20.1 869

6 IPE180 23.9 1320

7 IPE200 28.5 1940

8 IPE220 33.4 2770

9 IPE240 39.1 3890

10 IPE270 45.9 5790

11 IPE300 53.8 8360

12 IPE330 62.6 11,770

13 IPE360 72.7 16,270

14 IPE400 84.5 23,130

15 IPE450 98.8 33,740

16 IPE500 116 48,200

17 IPE550 134 67,120

18 IPE600 156 92,080

In this optimization problem, eighteen distinct cross-section types are considered, each
represented by a numerical index ranging from 1 to 18. These indices are associated with
the physical properties of the cross-section types—specifically, their area and moment of
inertia. For the construction of each neural network model, the indices corresponding to the
four structural cross-section types of the structure (see Figure 1) are considered as inputs.

This approach simplifies the original input—consisting of the geometrical properties
per cross-section type—into a single integer value ranging from 1 to 18, reducing the
number of network inputs and minimizing their range of values.

The neural network aims to predict the structural constraint value based on the input
cross-section types of the structure. In this study, a dataset comprising 65,536 precomputed
structures has been considered. The solved test case employed in this study is illustrated in
Figure 1, while the architecture of the artificial neural network is demonstrated in Figure 2.
In this context, the database contains 65,536 structures, comprising consecutive IPE120 to
IPE600 (16 cross-section types) for bars 1, 2, and 4, and IPE080 to IPE500 (16 cross-section
types) for bar 3, as defined in the optimization problem cited in [27]. To train, validate, and
test the neural network models, this dataset is divided into separate subsets. Given the high
computational cost associated with training each model and the large number of training
processes required, two reduced training set sizes—5% and 15% of the full dataset—have
been selected. For the validation and test phases, 10% of the dataset is consistently allocated
to each, ensuring that the data in these subsets are entirely distinct from the training data
and from each other. The assignment of data to the training, validation, and test sets is
performed randomly and independently of the row order in the original dataset.

Each ANN model will use the ADAM optimizer [31] and the Leaky ReLU activation
function [32] and will be trained over a total of 300 epochs. To generate the ANN models,
an ADAM optimizer is used with its default settings. This means that the optimizer



Algorithms 2025, 18, 754 8 of 20

is configured to work without weight decay, gradient clipping, or moving average of
weights; the parameters used in weight updating have the following values: α (learning
rate) = 0.001; β1 = 0.9; β2 = 0.999; ε = 10−7. On the other hand, the loss function used is the
mean squared error (MSE) in its simple form, without loss weighting or weights involved.
No regularization method or dropout is being used either.

Consequently, the training process involves a significant computational cost, while
the model’s accuracy is evaluated during the training using the validation loss. Through
a multi-objective Neural Architecture Search (NAS), the final objective is to find a set
of models capable of obtaining maximized models in terms of accuracy (i.e., the aim
is to minimize the validation loss in terms of Mean Squared Error MSE) and minimize
models in terms of training time. For this purpose, the NSGA-II algorithm is the multi-
objective evolutionary optimization method. A flowchart of the general procedure is shown
in Figure 3.

 

Figure 3. Flowchart of the algorithmic approach, where HL: number of hidden layers; NPL: number
of neurons per layer; BS: batch size; α: alpha parameter of Leaky ReLU.

Two population sizes (24 and 30) were considered. Each individual (or chromosome)
is represented by a set of four design variables (or genes), which are explained below,
specifying their minimum and maximum values:

• Number of hidden layers: 1–7.
• Number of nodes or neurons, per hidden layer: 10–400.
• Batch size used for training: 32–1024.
• Alpha parameter of the Leaky ReLU activation function: 0.05–0.50.

The ranges of the hyperparameters are of the same order as those cited in the works
referenced in the introduction. The findings indicate that the selected ranges facilitate the
acquisition of a diverse range of model types within the non-dominated front.

Leaky ReLU is an activation function used in ANN. This function is a variant of the
ReLU (Rectified Linear Unit) function, which is popularly used in neural networks. The
Leaky ReLU function is similar to the ReLU function, but instead of having a zero slope for
negative values, it has a small slope. This means that the function does not stop completely
at negative values, which can help prevent neuron saturation.

NSGA-II uses a binary simulated crossover SBX (crossover rate is 90% and crossover
index is 20%) and polynomial mutation (following the general rule of setting it as the
inverse of the number of design variables, mutation rate is 25% and mutation index is 20%).



Algorithms 2025, 18, 754 9 of 20

Four different experiments are considered: 24 and 30 population sizes, with and with-
out scaling fitness functions, with a stopping criterion of 3000 fitness function evaluations.
If the order of magnitude of the objective functions is highly different, the optimization
procedure can be affected: the crowding operator of the selection operator of the NSGA-II
algorithm is used to calculate the distances between adjacent individuals by adding the
values of the objective functions; however, this could not be a fair comparison if the func-
tions have very different magnitudes. To study this effect a scaled fitness function (training
time divided by 30 and validation loss is divided by 2 × 109) is used and compared to
the non-scaled case in the experiments. Moreover, scaling is mandatory when computing
the hypervolume (HV) indicator [33]. HV is a compliant quality indicator that represents
the area formed by the non-dominated front of solutions of a population of individuals
with respect to a reference point, which is set at [1.1, 1.1] for the problem discussed in this
article. The calculation of the hypervolume is meaningless if the objective values exceed
a predefined reference point [1.1, 1.1] in this work. To adjust the values of the non-scaled
objective functions below the reference point exclusively for the HV calculation, the training
time is divided by 30 and the validation loss by 2 × 109.

Each experiment is executed taking into account nine independent cases. A total
of 2 training set sizes (5% and 15%), times 2 population sizes (24 and 30), times 2 fitness
function calculations (without and with scaling), times 9 independent executions reach a
total of 2 × 2 × 2 × 9 = 72 runs of the evolutionary algorithm.

Mean and median convergence of HV curves, as well as Friedman statistical signif-
icance and post hoc tests, will be taken into account to measure the performance of the
abovementioned experiments. They are also compared versus random search; these ran-
dom individuals are trained independently, without an evolutionary process that allows
for the selection, crossover, and mutation of the best ones.

The accumulated non-dominated fronts among the whole set of experiments will also
be calculated, and those optimal artificial neural network designs from the multi-objective
point of view will be trained using the 80% of the database as training set and a 10% as
validation set, with the objective of observing the performance of the optimal models with
the full available dataset. After a model is trained, it is tested using the remaining 10% of
the available data (test set), whose accuracy is measured in terms of the MSE.

All experiments were implemented in Python 3.12.7 [34]. Multi-objective opti-
mization was performed using the NSGA-II algorithm, as implemented in the pymoo
0.6.1.6 library [35], while neural network training was carried out using TensorFlow
2.17 [36]. These libraries constitute the core tools for the evolutionary search and model
training processes. Friedman and post hoc statistical significance tests were performed
using the software available in ref. [37].

Computational experiments were executed on a Linux-based cluster, with the work-
load manually distributed across five nodes. Each node was equipped with two Intel Xeon
Silver 4314 processors (16 cores) and 128 GB of RAM. The experiments were executed on
CPU cores that are exclusive. In the context of the experimental design, it is imperative
to note that each experiment is subjected to nine parallel repetitions, encompassing four
distinct configurations of the primary experiment. These configurations include population
sizes of 24 and 30, with and without scaling, respectively. Additionally, two training set
sizes are considered, namely 5% and 15%. Consequently, this results in 36 runs of the
NSGA-II algorithm for each training size, with 3000 ANN trainings conducted in each
execution. The time specified in this article is the average for each of the 36 executions: the
first category, which was observed to last 7 days and 10 h (5%), and the second category,
which was observed to last 10 days and 6 h (15%).



Algorithms 2025, 18, 754 10 of 20

4. Experimental Results and Discussion
This section presents the experimental results obtained from the application of the

NSGA-II algorithm to the multi-objective optimization of neural network surrogate models.
The analysis focuses on the evolution of the hypervolume (HV) indicator, which reflects
the quality of the non-dominated solutions in terms of training time and validation loss.

Figure 4 shows the evolution of the mean HV indicator across 9 independent runs of
NSGA-II, using population sizes of 24 and 30, over 3000 fitness function evaluations. The
experiments were conducted both with and without fitness function scaling. The left side
of the figure corresponds to the case with a 5% training set size, while the right side shows
results for a 15% training set size. The vertical scales are equivalent, allowing for a direct
comparison between configurations.

Figure 4. Mean hypervolume convergence; training set sizes 5% (left) and 15% (right); dashed lines
represent one standard deviation boundaries.

It can be observed that, with equivalent vertical scales, the initial hypervolume (HV)
values in the 5% training set case—where training is faster—are slightly higher, ranging
from 1.170 to 1.173, compared to the 15% case, which ranges from 1.158 to 1.165. However,
after reaching the stopping criterion of the evolutionary process, the final HV values are
superior in the 15% training set case, exceeding 1.185 in 3 out of 4 runs. This improvement
is attributed to the larger training set, which enables the surrogate models to achieve
greater accuracy.

A similar trend is observed in Figure 5, which shows the convergence of the median
HV indicators. The final HV values in the scaled cases (represented by the blue and
yellow lines) are consistently higher than those in the non-scaled cases. The configuration
with the smallest population size (24 individuals and 125 generations) and no fitness
scaling—represented by the red line—exhibits the lowest performance.

Figure 5. Median hypervolume convergence; training set sizes 5% (left) and 15% (right); dashed lines
represent standard deviation boundaries.



Algorithms 2025, 18, 754 11 of 20

Median non-dominated fronts at stopping criterion of the case of 30 population size
scaling fitness functions versus random search are shown in Figure 6. NSGA-II optimization
designs clearly dominate the random search solutions (yellow curves are lower and more
left than black curves) in both training set sizes. Median non-dominated front of the 15%
training set size dominates the one of the 5% training set size, also clearly appreciated in
pink and gray lines of Figure 7.

 
Figure 6. Median non-dominated front (based on HV value, 9 independent executions); population
size 30, scaled fitness functions versus random. Training set sizes 5% (left) and 15% (right).

Figure 7. Global accumulated non-dominated front versus median fronts of 5% and 15% training
sizes (as in Figure 5).

The convergence data from the optimisation processes carried out (both populations
and hypervolume indicator values) are available as a Supplementary File associated with
this manuscript.

The global accumulated non-dominated front obtained from all tested experiments,
consisting of 49 neural network designs, is shown as a red line in Figure 7. Detailed
information on these designs—including hyperparameter configurations, corresponding
experimental settings, and fitness function values—is provided in Table 2, sorted from
lowest to highest training time (and inversely, from highest to lowest validation loss). It
can be observed that the accumulated front dominates the pink and gray fronts, which
correspond to the yellow curves previously shown in Figure 6.



Algorithms 2025, 18, 754 12 of 20

Table 2. Accumulated non-dominated solutions (5% + 15% training set sizes), including hyperparam-
eters values.

Rank Experiment Training
Set Size (%)

Hidden
Layers

Nodes
per Layer Batch Size Alpha Training Time

(Minutes)
Validation Loss

(×106)

1 30_inds_scaled 15 1 21 1022 0.221 0.489 1315.09

2 24_inds 5 2 24 890 0.0832 0.526 1035.59

3 24_inds_scaled 15 2 11 929 0.0742 0.535 932.71

4 30_inds_scaled 5 3 14 707 0.0656 0.539 839.73

5 30_inds_scaled 5 3 14 697 0.0656 0.544 759.70

6 30_inds_scaled 15 2 17 669 0.0521 0.547 364.52

7 30_inds 5 3 40 996 0.0674 0.547 234.56

8 30_inds 15 3 18 975 0.067 0.558 168.74

9 30_inds_scaled 5 7 11 1012 0.0656 0.558 32.94

10 30_inds_scaled 15 5 14 1023 0.0583 0.564 10.25

11 30_inds 15 4 15 870 0.0691 0.568 9.03

12 30_inds_scaled 15 5 20 1022 0.218 0.568 6.54

13 24_inds_scaled 15 4 30 989 0.0958 0.578 3.76

14 30_inds_scaled 5 7 37 738 0.0678 0.604 2.76

15 30_inds 5 7 40 996 0.0674 0.614 2.59

16 30_inds_scaled 15 7 29 968 0.0747 0.627 1.73

17 30_inds_scaled 15 7 29 951 0.0733 0.641 1.37

18 30_inds 15 6 37 630 0.0667 0.660 1.22

19 30_inds 15 6 44 637 0.0671 0.715 0.783

20 30_inds 15 6 44 530 0.0741 0.727 0.614

21 30_inds_scaled 15 6 47 297 0.0555 0.798 0.512

22 24_inds 15 7 55 331 0.0634 0.853 0.505

23 30_inds 15 5 158 985 0.0559 0.917 0.415

24 30_inds 15 5 136 932 0.0514 0.946 0.381

25 30_inds 15 5 131 796 0.05613 0.991 0.354

26 30_inds 15 5 136 845 0.0508 1.01 0.335

27 30_inds_scaled 15 4 97 207 0.0599 1.04 0.285

28 30_inds_scaled 15 6 79 251 0.0663 1.06 0.228

29 24_inds 15 7 76 205 0.0728 1.12 0.191

30 30_inds_scaled 15 7 78 181 0.0701 1.23 0.189

31 24_inds 15 5 75 124 0.0720 1.28 0.176

32 30_inds_scaled 15 5 136 199 0.0513 1.32 0.123

33 30_inds_scaled 15 4 119 124 0.0525 1.50 0.107

34 24_inds 15 4 134 159 0.0546 1.55 0.102

35 30_inds_scaled 15 4 119 124 0.0523 1.68 0.0918

36 24_inds 15 3 259 174 0.0646 1.81 0.0820

37 24_inds 15 3 259 176 0.0646 1.98 0.0717

38 24_inds_scaled 15 3 294 154 0.0532 2.03 0.0646

39 24_inds_scaled 15 3 219 90 0.0558 2.20 0.0562

40 30_inds_scaled 15 3 204 71 0.0526 2.43 0.0560

41 24_inds_scaled 15 3 226 57 0.0532 2.90 0.0519

42 30_inds_scaled 15 3 335 94 0.0590 3.00 0.0497

43 30_inds_scaled 15 3 335 94 0.0590 3.23 0.0467

44 24_inds_scaled 15 3 286 56 0.0628 3.57 0.0463



Algorithms 2025, 18, 754 13 of 20

Table 2. Cont.

Rank Experiment Training
Set Size (%)

Hidden
Layers

Nodes
per Layer Batch Size Alpha Training Time

(Minutes)
Validation Loss

(×106)

45 30_inds_scaled 15 3 304 38 0.0852 3.95 0.0444

46 24_inds_scaled 15 3 288 41 0.0557 4.18 0.044

47 24_inds 15 3 373 69 0.0644 4.26 0.0400

48 24_inds 15 3 343 51 0.0633 5.62 0.0396

49 30_inds_scaled 15 3 304 38 0.0577 9.70 0.0379

Figure 8 shows the boxplot distributions of the final HV for the 5% and 15% training
set cases, shown on the left and right sides of the figure, respectively. The plots also include
the distribution obtained from a random search, which performs significantly worse than
the evolutionary optimization methods.

Figure 8. Boxplots of HV distribution (9 independent executions) at final population.

Tables 3 and 4 present the results of the Friedman statistical significance test for
the 5% and 15% training set cases, respectively. The p-values obtained—4.6 × 10−3 and
3.0 × 10−3—are below the significance threshold of 0.05, indicating statistically signifi-
cant differences among the methods. The Bergmann–Hommel post hoc tests, shown in
Tables 5 and 6, reveal that random search performs worse than all NSGA-II optimization
configurations, except for the case with a population size of 24, no fitness scaling, and a
15% training set size, where the p-value is 0.0683, slightly above the 0.05 significance level.

Table 3. Average ranking of the algorithms (comparison based on hypervolume at stopping
criterion)—the lower, the better; Friedman test; 5 % training set size; p-value 0.004655.

Algorithm Friedman Test Ranking

24_inds_scaled 2.33
30_inds_scaled 2.33

30_inds 2.67
24_inds 2.89
random 4.78

Table 4. Average ranking of the algorithms (comparison based on hypervolume at stopping
criterion)—the lower, the better; Friedman test; 15 % training set size; p-value 0.003019.

Algorithm Friedman Test Ranking

24_inds_scaled 2.11
30_inds_scaled 2.33

30_inds 2.78
24_inds 3.00
random 4.78



Algorithms 2025, 18, 754 14 of 20

Table 5. Adjusted p values, Bergmann–Hommel’s post hoc procedure (comparison based on hyper-
volume at stopping criterion); 5 % training set size; statistical significance difference (p-value < 0.05)
in italics.

i Hypothesis p-Value

1 24_inds_scaled vs. random 0.0104

2 30_inds_scaled vs. random 0.0104

3 30_inds vs. random 0.0185

4 24_inds vs. random 0.0451

5 24_inds vs. 24_inds_scaled 2.736

6 24_inds vs. 30_inds_scaled 2.736

7 24_inds_scaled vs. 30_inds 2.736

8 30_inds vs. 30_inds_scaled 2.736

9 24_inds vs. 30_inds 2.736

i 24_inds_scaled vs. 30_inds_scaled 2.736

Table 6. Adjusted p values, Bergmann–Hommel’s post hoc procedure (comparison based on hyper-
volume at stopping criterion); 15 % training set size; statistical significance difference (p-value < 0.05)
in italics.

i Hypothesis p-Value

1 24_inds_scaled vs. random 0.00347

2 30_inds_scaled vs. random 0.00624

3 30_inds vs. random 0.0292

4 24_inds vs. random 0.0683

5 24_inds vs. 24_inds_scaled 1.398

6 24_inds_scaled vs. 30_inds 1.398

7 24_inds vs. 30_inds_scaled 1.398

8 30_inds vs. 30_inds_scaled 1.398

9 24_inds_scaled vs.
30_inds_scaled 1.531

10 24_inds vs. 30_inds 1.531

Among the NSGA-II configurations, although no statistically significant differences
were found, the scaled fitness function cases consistently achieved better rankings than the
non-scaled ones in both training set sizes (see Tables 3 and 4).

In Table 7, scaled cases of the 5% and 15% training set sizes using a Friedman test are
compared. The results indicate that there are no statistically significant differences between
the two configurations (p-value = 0.61), although the 15% training set cases exhibit a more
favorable ranking than those with 5%.

Based on the analysis of Figures 6 and 8, as well as the Friedman ranking tables and
the Bergmann–Hommel post hoc tests, the superiority of the evolutionary approach using
the NSGA-II algorithm over random search is clearly demonstrated.



Algorithms 2025, 18, 754 15 of 20

Table 7. Average ranking of the algorithms (comparison based on hypervolume at stopping
criterion)—the lower, the better; Friedman test; fitness function scaled cases; p-value 0.6149.

Algorithm Friedman Test Ranking

24_inds_scaled_15% 2.11
30_inds_scaled_15% 2.33
24_inds_scaled_05% 2.78
30_inds_scaled_05% 2.78

Detailed information on the global accumulated non-dominated front obtained from all
tested experiments is provided in Table 2, including hyperparameter values, corresponding
configurations, and fitness function results. The table is sorted from lowest to highest
training time (and inversely, from highest to lowest validation loss). The most accurate
model achieves a validation loss of approximately 0.038 million with a training time of
9.7 min, while the least accurate model requires only 0.489 min of training time but yields a
validation loss of 1315 million. Notably, three models located in the lower-left corner of the
Pareto front exhibit validation losses below 0.1 million and training times under 2 min and
can be considered compromise solutions (solutions ranked 35th, 36th, and 37th in Table 2).

Designs obtained using the 15% training set size account for 85% of the individuals
in the non-dominated front, including extreme cases. In contrast, designs generated with
the 5% training set size constitute less than 15% of the front and are associated with
higher validation losses and shorter training times. This suggests that a 5% training set
size (3275 individuals) is insufficient for this test case, whereas a 15% training set size
(9830 individuals) appears to be more appropriate.

Additionally, among the 49 non-dominated individuals, 22 correspond to the con-
figuration with a population size of 30 and scaled fitness functions, 11 to population
size 30 without scaling, 9 to population size 24 without scaling, and the remaining 7 to
population size 24 with scaling.

Regarding the number of hidden layers (with search values ranging from 1 to 7), a
value of 1 is only present in the leftmost solution, which corresponds to the lowest training
time and the highest validation loss. Except for this case, the eight individuals with better
training time have between 2 and 3 hidden layers. Individuals ranked 9th to 35th in terms
of training time exhibit hidden layer counts ranging from 4 to 7. Notably, the 14 non-
dominated solutions with the lowest validation loss consistently feature three hidden
layers, suggesting that this configuration offers a favorable balance between accuracy and
training efficiency.

Regarding the number of nodes per layer (with search values ranging from 10 to
400), the top 22 individuals, in terms of training time, have between 11 and 55 nodes per
layer. Solutions ranked 23rd to 35th show values between 75 and 158 nodes, while those
ranked 36th to 49th range from 204 to 373 nodes per layer. Although the trend is not strictly
monotonic, there is a noticeable tendency for higher accuracy (and correspondingly longer
training times) to be associated with an increased number of nodes per layer within the
recommended ranges.

Regarding batch size (with search values ranging from 32 to 1024), the 19 designs
with the lowest training time exhibit batch sizes between 637 and 1023. Designs ranked
20th to 28th have batch sizes ranging from 205 to 985, while those ranked 29th to 37th
fall between 124 and 199. The 11 designs with the best validation loss show batch sizes
between 38 and 90. Although the trend is not strictly monotonically decreasing, there is
a noticeable tendency for smaller batch sizes to be associated with higher accuracy and,
correspondingly, longer training times.



Algorithms 2025, 18, 754 16 of 20

Regarding the alpha parameter of the Leaky ReLU activation function (with search
values ranging from 0.05 to 0.5), dominant values are concentrated between 0.05 and
0.08. Specifically, 20 solutions fall within the range 0.05–0.06, 17 within 0.06–0.07, 7 within
0.07–0.08, 3 within 0.08–0.10, and 2 between 0.10 and 0.23. Notably, 75% of the values lie
within the interval from 0.051 to 0.069, which is close to the lower bound of the search space.

It is also observed that the 10 individuals with the best validation loss share common
characteristics: they use three hidden layers, between 204 and 373 nodes per layer, and
batch sizes ranging from 38 to 71. Among these, eight originate from experiments where the
fitness function was scaled. Training times for these models range from 2.43 to 9.705 min.

Additionally, these 49 optimum designs from the multi-objective point of view (non-
dominated solutions) were taken as reference designs and trained with the full training
dataset (80%, 52,429 structures). The resulting training times, validation set losses, and test
set mean squared errors (MSE) are represented in Figure 9. In this figure, blue dots refer
to the test set results, while red dots correspond to validation set results. Non-dominated
solutions have been highlighted with connecting lines, and their detailed metrics are shown
in Tables 8 and 9. Notably, eight solutions are common to both tables.

Figure 9. Accumulated non-dominated neural network designs (as in Table 2), retrained using 80%
of the dataset, and results of validation set loss and test set MSE versus training time.

Table 8. Results obtained using 80% of the dataset for training, showing training time and validation
loss for non-dominated solutions (highlighted with red lines in Figure 9).

Rank Hidden
Layers

Nodes per
Layer Batch Size Alpha Training

Time
Validation
Loss (×106)

1 7 11 1012 0.0656 0.732 2.361

2 6 37 630 0.0667 0.782 0.226

3 7 37 738 0.0678 4.310 0.179

4 7 55 331 0.0634 5.167 0.101

5 5 136 932 0.0514 6.612 0.0813

6 5 136 845 0.0508 6.797 0.0654

7 5 75 124 0.0720 8.827 0.0410

8 3 259 174 0.0646 10.941 0.0176

9 3 259 176 0.0646 14.893 0.0162

10 3 294 154 0.0532 15.534 0.0143

11 3 335 94 0.0590 22.181 0.0124

12 3 373 69 0.0644 24.278 0.0113



Algorithms 2025, 18, 754 17 of 20

Table 9. 80% training set size results in terms of training time and test set MSE, non-dominated
solutions (blue line solutions in Figure 9).

Rank Hidden
Layers

Nodes
per Layer

Batch
Size Alpha Training

Time
Test MSE

(×106)

1 7 11 1012 0.0656 0.732 2.529

2 6 37 630 0.0667 0.782 0.256

3 7 55 331 0.0634 5.167 0.169

4 5 136 932 0.0514 6.612 0.0997

5 5 75 124 0.0720 8.827 0.0747

6 7 76 205 0.0728 9.862 0.0579

7 3 259 174 0.0646 10.941 0.0351

8 3 259 176 0.0646 14.893 0.0162

9 3 204 71 0.0526 20.610 0.0231

10 3 373 69 0.0644 24.278 0.0173

11 3 304 38 0.0577 48.148 0.0169

Table 9 includes 11 solutions, among which the top five most accurate designs all share
a configuration of three hidden layers. The remaining designs, which exhibit lower training
times but higher validation losses, have between 5 and 7 hidden layers. The number of
nodes per layer increases (though not monotonically) from 11 to 304 when moving from less
accurate to more accurate designs. Similarly, batch size decreases (also non-monotonically)
from 1012 to 38 along the same accuracy gradient. The alpha parameter of the Leaky ReLU
activation function varies within the range from 0.0514 to 0.0728, without a clear trend.

5. Conclusions
From a multi-objective point of view, the importance of hyperparameter tuning in the

performance of the neural network-based metamodel has been demonstrated, considering
both the accuracy and complexity of the network. Extensive experimentation across
different population sizes, training set proportions, and fitness scaling strategies revealed
interesting insights: larger training sets (15%) provide a greater number of designs in the
accumulated non-dominated front and scaled fitness functions contribute to improved
convergence and final hypervolume indicators. Statistical tests confirm the superiority of
evolutionary optimization over random search.

Instead of increasing the training set size during the optimization process (highly
costly), in this manuscript only the non-dominated solutions were afforded to train with
the full training set (80%), as shown in Tables 8 and 9, with satisfactory outcomes.

The analysis of the 49 non-dominated solutions reveals clear trends in hyperparameter
configurations in the handled test case. Models containing three hidden layers, approxi-
mately 300 neurons each, and small batch sizes (38–71) tend to achieve the best validation
performance in less time during training. Additionally, the alpha parameter of the Leaky
ReLU activation function is strongly concentrated near the lower bound of the search space
(0.05–0.50), suggesting its relevance in fine-tuning model behavior.

In the handled test case, the final non-dominated front (e.g., Table 9) provides solutions
that combine a high number of layers (6–7) with a low number of nodes per layer (11–55)
for the fastest training solutions with the best accuracy. Alternatively, solutions with three
layers and a high number of nodes per layer (200–300) provide the most accurate solutions
and train more quickly. This combination is obviously not optimal in terms of both accuracy
and network complexity simultaneously. Thus, in other referenced studies, even when



Algorithms 2025, 18, 754 18 of 20

solving larger structures, a limited number of network configurations that do not take this
variability into account (either considering only a small number of layers with a small
number of nodes per layer or a large number of layers with a large number of nodes per
layer, or even limiting the number of layers in the network to a number shown here to be
insufficient, such as four) have been tested.

The use of surrogate modeling in structural engineering is linked to those needs/
applications that require a high number of structural evaluations, in which case the straight-
forward evaluation using numerical models (as the finite element method) would be
unaffordable to available computational resources when repeated many times. They could
typically comprise the cases of design, control, uncertainty quantification, and optimiza-
tion [38]. Although in the first three former applications a surrogate covering the whole
search space would be enough, in the latter case (optimization) the exploration of the
variable space is not uniform but follows a search path. Then, it would be necessary to
update the surrogate model during the optimization convergence, therefore requiring many
trainings of the surrogate during the search. The multi-objective neural architecture search
(NAS) approach proposed here allows us to obtain the most accurate surrogate model for
every training time, or alternatively seen, the lower training time model for every accuracy.
Therefore, low fidelity models (less accurate but faster to train) are available in the left part
of the attained non-dominated set provided by the methodology of this manuscript, while
high fidelity models (more accurate but slower to train) are available in the right part of the
non-dominated set. The decision-maker/engineer is able to choose the surrogate model
among the non-dominated set which mostly fits his preferences/needs. This also allows a
more scientifically accurate selection when designing multi-fidelity strategies that combine
simultaneously high fidelity and low fidelity methods (as in, e.g., [39]).

The generalization of these conclusions would be subject to a broader study with
several structures of different sizes and/or types, which could be the subject of future
studies. Among the potential future lines of research, the application of this methodol-
ogy to analogous structural problems that are more complex or larger in scale could be
explored, including other structural types, provided that an adequate database is available.
Notwithstanding the elevated computational expense associated with the network training
time during the optimization process, this article proposes a methodology that assists in
resolving this issue. The methodology involves the execution of the optimization with a
constrained training database size and the exclusive utilization of the complete database
for the training of the optimal models that appear in the non-dominated solution front.

These findings provide valuable insights into designing efficient and accurate surro-
gate models in structural engineering and lay the groundwork for future multi-objective
neural architecture search work in this field. Using this methodology for more complex is-
sues is a promising avenue for future research, using either the same or alternative objective
functions, depending on the nature of the problem.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/a18120754/s1. The data concerning the experimental results
that are available consist of the populations and their hypervolumes along the convergence of the
test cases, as well as at the stopping criterion. These data can be found in the Supplementary File
associated with this manuscript.

Author Contributions: Conceptualization, N.L.-G., E.R. and D.G.; methodology, N.L.-G., E.R. and
D.G.; software, N.L.-G., E.R. and D.G.; validation, N.L.-G., E.R. and D.G.; formal analysis, N.L.-G.,
E.R. and D.G.; investigation, N.L.-G., E.R. and D.G.; resources, E.R. and D.G.; data curation, N.L.-G.;
writing—original draft preparation, N.L.-G., E.R., and D.G.; writing—review and editing, N.L.-G.,
E.R., and D.G.; visualization, N.L.-G. and E.R.; supervision, E.R. and D.G.; project administration,

https://www.mdpi.com/article/10.3390/a18120754/s1
https://www.mdpi.com/article/10.3390/a18120754/s1


Algorithms 2025, 18, 754 19 of 20

E.R. and D.G.; funding acquisition, E.R. and D.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research has been supported by: Ministerio de Ciencia, Innovación y Universi-
dades, Gobierno de España, grant contract PID2024-57499OB-C31; and Consejería de Universi-
dades, Ciencia e Innovación y Cultura del Gobierno de Canarias, grant contract PRECOMP02 SD-
24/03. Also, first author acknowledges predoctoral grant FPU22/01933 of Ministry of Universities of
Spanish Government.

Data Availability Statement: Data will be made available on request.

Acknowledgments: The computational equipment used in this research was acquired through the
project “Infraestructura de Computación Científica para Aplicaciones de Inteligencia Artificial y
Simulación Numérica en Medioambiente y Gestión de Energías Renovables (EIS 2021 04)”, awarded
to the Instituto Universitario SIANI by the Consejería de Economía, Conocimiento y Empleo del
Gobierno de Canarias, processed by the Agencia Canaria de Investigación, Innovación y Sociedad
de la Información, and co-funded by the European Regional Development Fund (ERDF) under the
Canary Islands ERDF Operational Program.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ADAM Adaptive Moment Estimation
ANN Artificial Neural Network
EA Evolutionary Algorithm
HV Hypervolume
MSE Mean Squared Error
NSGA-II Non-dominated Sorting Genetic Algorithm II

References
1. Greiner, D.; Periaux, J.; Emperador, J.M.; Galván, B.; Winter, G. Game theory based Evolutionary Algorithms: A review with

Nash applications in structural engineering optimization problems. Arch. Comput. Methods Eng. 2017, 24, 703–750. [CrossRef]
2. Hajela, P.; Berke, L. Neurobiological computational models in structural analysis and design. Comput. Struct. 1991, 41, 657–667.

[CrossRef]
3. Waszczyszyn, Z. Some recent and current problems of neurocomputing in civil and structural engineering. In Advances in

Computational Structures Technology; Topping, B.H.V., Ed.; CIVIL-COMP Press: Edinburgh, Scotland, 1996; pp. 43–58.
4. Papadrakakis, M.; Lagaros, N.; Tsompanakis, Y. Structural optimization using evolution strategies and neural networks. Comput.

Methods Appl. Mech. Eng. 1998, 156, 309–333. [CrossRef]
5. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
6. Bäck, T.H.W.; Kononova, A.V.; van Stein, B.; Wang, H.; Antonov, K.A.; Kalkreuth, R.T.; de Nobel, J.; Vermetten, D.; de Winter,

R.; Ye, F. Evolutionary algorithms for parameter optimization—Thirty years later. Evol. Comput. 2023, 31, 81–122. [CrossRef]
[PubMed]

7. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Chichester, UK, 2001.
8. Hernández-Gil, M.; Ramos-de-Miguel, A.; Greiner, D.; Benítez, D.; Ramos-Macías, A.; Escobar, J.M. A computational model for

multiobjective optimization of multipolar stimulation in cochlear implants: An enhanced focusing approach. Expert Syst. Appl.
2025, 280, 127472. [CrossRef]

9. Greiner, D.; Cacereño, A. Enhancing the maintenance strategy and cost in systems with surrogate assisted multiobjective
evolutionary algorithms. Dev. Built Environ. 2024, 19, 100478. [CrossRef]

10. He, C.; Zhang, Y.; Gong, D.; Ji, X. A review of surrogate-assisted evolutionary algorithms for expensive optimization problems.
Expert Syst. Appl. 2023, 217, 119495. [CrossRef]

11. Xing, L.; Gardoni, P.; Song, G.; Zhou, Y. Deep learning-based surrogate capacity models and multi-objective fragility estimates for
reinforced concrete frames. Comput. Methods Appl. Mech. Eng. 2025, 440, 117928. [CrossRef]

https://doi.org/10.1007/s11831-016-9187-y
https://doi.org/10.1016/0045-7949(91)90178-O
https://doi.org/10.1016/s0045-7825(97)00215-6
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/evco_a_00325
https://www.ncbi.nlm.nih.gov/pubmed/37339005
https://doi.org/10.1016/j.eswa.2025.127472
https://doi.org/10.1016/j.dibe.2024.100478
https://doi.org/10.1016/j.eswa.2022.119495
https://doi.org/10.1016/j.cma.2025.117928


Algorithms 2025, 18, 754 20 of 20

12. Quevedo-Reina, R.; Álamo, G.; Padrón, L.A.; Aznárez, J.J. Surrogate model based on ANN for the evaluation of the fundamental
frequency of offshore wind turbines supported on jackets. Comput. Struct. 2023, 274, 106917. [CrossRef]

13. Quevedo-Reina, R.; Álamo, G.; Aznárez, J.J. ANN-based surrogate model for the structural evaluation of jacket support structures
for offshore wind turbines. Ocean Eng. 2025, 317, 119984. [CrossRef]

14. Elsken, T.; Hendrik-Metzen, J.; Hutter, F. Neural Architecture Search: A Survey. J. Mach. Learn. Res. 2019, 20, 1–21.
15. Pour Avval, S.S.; Eskue, N.; Groves, R.; Yaghoubi, V. Systematic review of neural architecture search. Artif. Intell. Rev. 2025, 58, 73.

[CrossRef]
16. Negrin, I.; Kripka, M.; Yepes, V. Metamodel-assisted design optimization in the field of structural engineering: A literature review.

Structures 2023, 52, 609–631. [CrossRef]
17. Etim, B.; Al-Ghosoun, A.; Renno, J.; Seaid, M.; Mohamed, M.S. Machine Learning-Based Modeling for Structural Engineering:

A Comprehensive Survey and Applications Overview. Buildings 2024, 14, 3515. [CrossRef]
18. Saini, R. A Review on Artificial Neural Networks for Structural Analysis. J. Vib. Eng. Technol. 2025, 13, 142. [CrossRef]
19. Samadian, D.; Muhit, I.B.; Dawood, N. Application of Data-Driven Surrogate Models in Structural Engineering: A Literature

Review. Arch. Comput. Methods Eng. 2025, 32, 735–784. [CrossRef]
20. Kim, Y.H.; Reddy, B.; Yun, S.; Seo, C. NEMO: Neuro-evolution with multi-objective optimization of deep neural network for

speed and accuracy. In Proceedings of the International Conference on Machine Learning ICML 2017, Auto Machine Learning
Workshop, Sydney, Australia, 6–11 August 2017.

21. White, C.; Safari, M.; Sukthanker, R.; Ru, B.; Elsken, T.; Zela, A.; Dey, D.; Hutter, F. Neural Architecture Search: Insights from
1000 Papers. arXiv 2021, arXiv:2301.08727. [CrossRef]

22. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

23. Akopov, A.S. An Improved Parallel Biobjective Hybrid Real-Coded Genetic Algorithm with Clustering-Based Selection. Cybern.
Inf. Technol. 2024, 24, 32–49. [CrossRef]

24. Nguyen, T.L.; Nguyen, Q.A. A Multi-Objective PSO-GWO Approach for Smart Grid Reconfiguration with Renewable Energy
and Electric Vehicles. Energies 2025, 18, 2020. [CrossRef]

25. Tian, Y.; Cheng, R.; Zhang, X.Y.; Jin, Y.C. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization
[Educational Forum]. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [CrossRef]

26. Deb, K. An interview with Kalyanmoy Deb 2022 ACM fellow. ACM SIGEVOlution 2023, 16, 1–6. [CrossRef]
27. Greiner, D.; Winter, G.; Emperador, J.M. Optimising frame structures by different strategies of genetic algorithms. Finite Elem.

Anal. Des. 2001, 37, 381–402. [CrossRef]
28. Bathe, K.J. Finite Element Procedures; Prentice Hall: Hoboken, NJ, USA, 2006.
29. EN 1993; Eurocode 3: Design of Steel Structures. European Community Standard: Luxembourg, 1993.
30. Hernández-Ibáñez, S. Structural Optimum Design Methods. Colección Seinor; Colegio de Ingenieros de Caminos, Canales y Puertos:

Madrid, Spain, 1990. (In Spanish)
31. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
32. Wang, G.; Giannakis, G.B.; Chen, J. Learning ReLU networks on linearly separable data: Algorithm, optimality, and generalization.

IEEE Trans. Signal Process. 2019, 67, 2357–2370. [CrossRef]
33. Guerreiro, A.P.; Fonseca, C.M.; Paquete, L. The hypervolume indicator: Computational problems and algorithms. ACM Comput.

Surv. 2021, 54, 1–42.
34. Python Software Foundation. Python: Version 3.12.7 Documentation. 2024. Available online: https://docs.python.org/3/

(accessed on 10 November 2025).
35. Blank, J.; Deb, K. Pymoo: Multi-objective optimization in Python. IEEE Access 2020, 8, 89497–89509. [CrossRef]
36. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A

System for Large-Scale Machine Learning. arXiv 2016, arXiv:1605.08695.
37. Garcia, S.; Herrera, F. An extension on ‘statistical comparisons of classifiers over multiple data sets’ for all pairwise comparisons.

J. Mach. Learn. Res. 2007, 9, 2677–2694.
38. Benner, P.; Gugercin, S.; Willcox, K. A survey of projection-based model reduction methods for parametric dynamical systems.

SIAM Rev. 2015, 57, 483–531. [CrossRef]
39. Porta-Ko, A.; González-Horcas, S.; Pons-Prats, J.; Bugeda, G. Development of a multi-fidelity optimisation strategy based on

hybrid methods. Struct. Multidiscip. Optim. 2024, 67, 163. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compstruc.2022.106917
https://doi.org/10.1016/j.oceaneng.2024.119984
https://doi.org/10.1007/s10462-024-11058-w
https://doi.org/10.1016/j.istruc.2023.04.006
https://doi.org/10.3390/buildings14113515
https://doi.org/10.1007/s42417-024-01749-7
https://doi.org/10.1007/s11831-024-10152-0
https://doi.org/10.48550/arXiv.2301.08727
https://doi.org/10.1109/4235.996017
https://doi.org/10.2478/cait-2024-0014
https://doi.org/10.3390/en18082020
https://doi.org/10.1109/MCI.2017.2742868
https://doi.org/10.1145/3594261.3594262
https://doi.org/10.1016/S0168-874X(00)00054-8
https://doi.org/10.1109/tsp.2019.2904921
https://docs.python.org/3/
https://doi.org/10.1109/access.2020.2990567
https://doi.org/10.1137/130932715
https://doi.org/10.1007/s00158-024-03866-z

	Introduction 
	Structural Engineering Problem and Test Case 
	Finite Element Method 
	Skeletal Frame Structures 
	Test Case 

	Artificial Neural Network Surrogate Model and Neural Architecture Search 
	Mathematical Description 
	Definition of the Multi-Objective Optimization Problem 
	Neural Network 

	Methods: Multiobjective NAS in Structural Engineering 

	Experimental Results and Discussion 
	Conclusions 
	References

