Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/15480
Título: | Forecasting financial failure of firms via genetic algorithms | Autores/as: | Acosta González, Eduardo Fernández-Rodríguez, Fernando |
Clasificación UNESCO: | 53 Ciencias económicas | Palabras clave: | Financial failure Financial distress Bankruptcy Genetic algorithms Variable selection |
Fecha de publicación: | 2014 | Publicación seriada: | Computational Economics | Resumen: | Given a wide amount of possible ratios available for constructing a LOGIT model for forecasting bankruptcy, this paper provides a computational search methodology, only guided by data, for selecting the financial ratios employed in the model. This procedure is based on genetic algorithms which are used to explore the universe of models made available by all possible existing financial ratios (with very redundant information). This search process of the correct model is guided by the Schwarz information criterion. As an empirical illustration, the methodology is applied to forecasting the failure of firms in the Spanish building industry using annual public accounting information | URI: | http://hdl.handle.net/10553/15480 | ISSN: | 0927-7099 | DOI: | 10.1007/s10614-013-9392-9 | Fuente: | Computational Economics[ISSN 0927-7099],v. 43, p. 133-157 |
Colección: | Artículos |
Citas SCOPUSTM
36
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
32
actualizado el 15-dic-2024
Visitas
127
actualizado el 09-nov-2024
Descargas
339
actualizado el 09-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Este elemento está sujeto a una licencia Licencia Creative Commons