Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/15480
Título: Forecasting financial failure of firms via genetic algorithms
Autores/as: Acosta González, Eduardo 
Fernández-Rodríguez, Fernando 
Clasificación UNESCO: 53 Ciencias económicas
Palabras clave: Financial failure
Financial distress
Bankruptcy
Genetic algorithms
Variable selection
Fecha de publicación: 2014
Publicación seriada: Computational Economics 
Resumen: Given a wide amount of possible ratios available for constructing a LOGIT model for forecasting bankruptcy, this paper provides a computational search methodology, only guided by data, for selecting the financial ratios employed in the model. This procedure is based on genetic algorithms which are used to explore the universe of models made available by all possible existing financial ratios (with very redundant information). This search process of the correct model is guided by the Schwarz information criterion. As an empirical illustration, the methodology is applied to forecasting the failure of firms in the Spanish building industry using annual public accounting information
URI: http://hdl.handle.net/10553/15480
ISSN: 0927-7099
DOI: 10.1007/s10614-013-9392-9
Fuente: Computational Economics[ISSN 0927-7099],v. 43, p. 133-157
Colección:Artículos
miniatura
Adobe PDF (57,81 kB)
Vista completa

Citas SCOPUSTM   

36
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

32
actualizado el 15-dic-2024

Visitas

127
actualizado el 09-nov-2024

Descargas

339
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons