Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154583
Campo DC Valoridioma
dc.contributor.authorFerrera Alayón, Laura-
dc.contributor.authorPalmas-Candia, Fiorella Ximena-
dc.contributor.authorSalas-Salas, Barbara-
dc.contributor.authorGonzález-Martín, Jesús María-
dc.contributor.authorDiaz-Saavedra, Raquel-
dc.contributor.authorRamos Ortiz, Anaïs-
dc.contributor.authorLara Jiménez, Pedro Carlos-
dc.contributor.authorLloret Sáez-Bravo, Marta-
dc.date.accessioned2026-01-09T19:24:23Z-
dc.date.available2026-01-09T19:24:23Z-
dc.date.issued2025-
dc.identifier.issn2072-6694-
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/154583-
dc.description.abstractBackground: An accurate prognostic assessment is essential to optimize treatment strategies in head and neck cancer (HNC). This study aimed to develop and internally evaluate an AI-assisted survival risk score derived from automatically quantified cervical muscle parameters on routine radiotherapy-planning CT scans. Methods: Pretreatment CT images were processed in a single-center cohort of 65 HNC patients, using AI-assisted automated segmentation to obtain the cervical skeletal muscle index (SMI), intramuscular adipose tissue area (IMAT), and mean muscle attenuation (HU). A multivariable Cox regression model was used to generate the continuous FUNC-RISK score, and model performance was assessed using time-dependent ROC curves at 36 and 60 months. Results: Patient-, tumor-, and treatment-related characteristics were not predictive of survival. SMI (p = 0.006) and IMAT (p = 0.047) were significantly associated with overall survival in a univariable analysis, while HU showed a borderline association (p = 0.087). All three parameters were included in the multivariable model, yielding the following equation: FUNC-RISK = (−0.364 × SMI) + (−0.087 × IMAT) + (0.011 × HU). The model demonstrated moderate discrimination (AUC = 0.734 at 36 months; 95% CI 0.604–0.863; p = 0.002, and AUC = 0.689 at 60 months; 95% CI 0.558–0.819; p = 0.009). Based on the median score (−3.18), patients were stratified into low- and high-risk groups. Five-year overall survival was 71.9% ± 7.9% for the low-risk group versus 39.4% ± 8.5% for the high-risk group (p = 0.006). Conclusions: FUNC-RISK provides preliminary evidence of clinically meaningful prognostic stratification based on AI-derived cervical muscle quantity and quality metrics obtained from routine radiotherapy-planning CT scans. These exploratory results support the potential role of automated body-composition analysis in personalized risk assessment for HNC, although external multicenter validation is required before clinical implementation.-
dc.languageeng-
dc.relation.ispartofCancers (Basel)-
dc.sourceCancers[EISSN 2072-6694],v. 17 (24), (Diciembre 2025)-
dc.subject32 Ciencias médicas-
dc.subject320713 Oncología-
dc.subject.otherArtificial Intelligence-
dc.subject.otherCancer-
dc.subject.otherCorporal Composition-
dc.subject.otherHead And Neck-
dc.subject.otherRadiotherapy-
dc.titleDevelopment and Internal Evaluation of AI-Assisted Cervical Muscle-Based Scores (FUNC-RISK) in Head and Neck Cancer: A Pilot Study-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.3390/cancers17243968-
dc.identifier.scopus105025983844-
dc.identifier.isi001646285800001-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-9941-1816-
dc.contributor.orcid0000-0002-4336-4045-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0003-1709-6232-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57209144026-
dc.contributor.authorscopusid57194164384-
dc.contributor.authorscopusid57209142019-
dc.contributor.authorscopusid57203435427-
dc.contributor.authorscopusid58926431500-
dc.contributor.authorscopusid59706725100-
dc.contributor.authorscopusid7004374085-
dc.contributor.authorscopusid7003855087-
dc.identifier.eissn2072-6694-
dc.identifier.issue24-
dc.relation.volume17-
dc.investigacionCiencias de la Salud-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages16-
dc.utils.revision-
dc.contributor.wosstandardWOS:Ferrera-Alayon, L-
dc.contributor.wosstandardWOS:Palmas-Candia, FX-
dc.contributor.wosstandardWOS:Salas-Salas, B-
dc.contributor.wosstandardWOS:González-Martín, JM-
dc.contributor.wosstandardWOS:Diaz-Saavedra, R-
dc.contributor.wosstandardWOS:Ramos-Ortiz, A-
dc.contributor.wosstandardWOS:Lara, PC-
dc.contributor.wosstandardWOS:Sáez-Bravo, ML-
dc.date.coverdateDiciembre 2025-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-MED-
dc.description.sjr1,391
dc.description.jcr4,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.miaricds10,6
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptDepartamento de Ciencias Clínicas-
crisitem.author.fullNameFerrera Alayón, Laura-
crisitem.author.fullNameRamos Ortiz, Anaïs-
crisitem.author.fullNameLara Jiménez, Pedro Carlos-
crisitem.author.fullNameLloret Sáez-Bravo, Marta-
Colección:Artículos
Adobe PDF (757,61 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.