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Simple Summary

This study aimed to develop and internally evaluate an AI-assisted survival risk score
based on automatically quantified cervical muscle parameters. It was conducted in a
single-center cohort of 65 patients with head and neck cancer (HNC). AI-powered segmen-
tation of planning CT scans enabled automated extraction of the cervical skeletal muscle
index (SMI), an intramuscular adipose tissue area (IMAT) and mean muscle attenuation
expressed in Hounsfield units (HUs). The resulting FUNC-RISK score showed significant
prognostic discrimination, with 5-year overall survival rates of 71.9% ± 7.9% in the low-risk
group and 39.4% ± 8.5% in the high-risk group (p = 0.006). FUNC-RISK offers clinically
meaningful stratification based on AI-derived muscle quantity and quality metrics from
routine radiotherapy CT scans. These results support the potential of automated CT-based
body-composition analysis to enhance personalized prognostic assessment in head and
neck oncology.

Abstract

Background: An accurate prognostic assessment is essential to optimize treatment strategies
in head and neck cancer (HNC). This study aimed to develop and internally evaluate an
AI-assisted survival risk score derived from automatically quantified cervical muscle
parameters on routine radiotherapy-planning CT scans. Methods: Pretreatment CT images
were processed in a single-center cohort of 65 HNC patients, using AI-assisted automated
segmentation to obtain the cervical skeletal muscle index (SMI), intramuscular adipose
tissue area (IMAT), and mean muscle attenuation (HU). A multivariable Cox regression
model was used to generate the continuous FUNC-RISK score, and model performance was
assessed using time-dependent ROC curves at 36 and 60 months. Results: Patient-, tumor-,
and treatment-related characteristics were not predictive of survival. SMI (p = 0.006) and
IMAT (p = 0.047) were significantly associated with overall survival in a univariable analysis,
while HU showed a borderline association (p = 0.087). All three parameters were included
in the multivariable model, yielding the following equation: FUNC-RISK = (−0.364 × SMI)
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+ (−0.087 × IMAT) + (0.011 × HU). The model demonstrated moderate discrimination
(AUC = 0.734 at 36 months; 95% CI 0.604–0.863; p = 0.002, and AUC = 0.689 at 60 months;
95% CI 0.558–0.819; p = 0.009). Based on the median score (−3.18), patients were stratified
into low- and high-risk groups. Five-year overall survival was 71.9% ± 7.9% for the low-risk
group versus 39.4% ± 8.5% for the high-risk group (p = 0.006). Conclusions: FUNC-RISK
provides preliminary evidence of clinically meaningful prognostic stratification based on AI-
derived cervical muscle quantity and quality metrics obtained from routine radiotherapy-
planning CT scans. These exploratory results support the potential role of automated
body-composition analysis in personalized risk assessment for HNC, although external
multicenter validation is required before clinical implementation.

Keywords: artificial intelligence; head and neck; cancer; radiotherapy; corporal composition

1. Introduction
Head and neck cancer (HNC) is the seventh most prevalent malignancy worldwide,

with an estimated number of 890,000 new cases and 450,000 deaths each year, underscoring
its considerable global burden [1,2]. Despite therapeutic advances in surgery, radiotherapy
(RT) and systemic therapies, survival outcomes remain suboptimal, particularly in locally
advanced disease [3–5]. These limitations highlight the need for more refined prognostic
tools to identify vulnerable patients and optimize therapeutic decision-making.

Beyond tumor stage and treatment modalities, growing evidence indicates that host-
related factors—nutritional, metabolic and functional—play a decisive role in treatment tol-
erance and survival in HNC [3–7]. Sarcopenia and impaired muscle quality have emerged
as key prognostic markers. Reduced muscle mass, lower muscle attenuation and greater fat
infiltration are consistently associated with increased toxicity, treatment interruptions and
poorer outcomes in patients receiving chemoradiotherapy [5–12]. These alterations reflect
complex interactions between nutritional decline, systemic inflammation and metabolic
dysregulation that influence both short- and long-term prognosis [6,10–13].

Computed tomography (CT) is the reference method for body-composition assess-
ment. It enables precise quantification of muscle area and attenuation, using standardized
Hounsfield Unit (HU) thresholds [10,11,14]. Although, traditionally, muscle evaluation
relies on measurements at the L3 vertebral level, patients with HNC rarely undergo ab-
dominal imaging. For this reason, measurements at the third cervical vertebra (C3) have
been validated as reliable surrogates, demonstrating strong correlation with L3-derived
metrics, and retaining prognostic significance in HNC cohorts [7,9,14–17]. Importantly,
these parameters can be obtained directly from routine RT-planning CT scans, avoiding
additional imaging or radiation exposure [13,16–18].

Despite increasing interest in body-composition analysis, many published studies rely
on manual or semi-automated segmentation, which is time-consuming. It also introduces
inter-observer variability, limiting its clinical applicability [6,10,16,17]. This methodological
heterogeneity has impeded the standardization and establishment of widely accepted
cut-offs for sarcopenia or myosteatosis [16,17,19,20]. Recent advances in artificial intelli-
gence (AI) allow rapid, reproducible and observer-independent segmentation across large
datasets, enabling standardized extraction of muscle area, adipose tissue and attenuation
from CT scans [13–16,19–21]. These developments provide an opportunity to integrate
objective, automated morphometric biomarkers into routine RT workflows, bridging the
gap between quantitative imaging and clinical outcomes in HNC [7–9,13,14,18,20,22].
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The aim of this study was to develop and internally evaluate a fully automated prog-
nostic score (FUNC-RISK) integrating cervical skeletal muscle index (SMI), intramuscular
adipose tissue (IMAT), and muscle attenuation (HU) derived from AI-based analysis of
RT-planning CT scans. The model was designed to evaluate its ability to predict overall
survival (OS) at 36 and 60 months, and to explore its potential clinical applicability as an
objective, reproducible and scalable tool in radiation oncology.

2. Materials and Methods
2.1. Study Design and Patient Selection

The patient cohort analyzed in this prospective study has been previously described in
detail in two related publications from our group [21,23]. In summary, we included adults
aged ≥ 18 years with histologically confirmed squamous cell carcinoma of the head and
neck, who were referred for curative-intent RT at the Department of Radiation Oncology,
University Hospital Dr. Negrín (Las Palmas, Spain). Patients receiving concurrent systemic
therapy were also eligible. Exclusion criteria were age < 18 years, non-squamous histology,
palliative RT indication and cervical lymph node metastases from an unknown primary
tumor. Oropharyngeal squamous cell carcinomas were not included in this cohort; therefore,
HPV/p16 status was not applicable.

From the 68 evaluable patients reported in our earlier publication [21,23], three were
subsequently excluded because they had cervical metastases from an unknown primary
site. The final cohort consisted of 65 patients, with complete imaging and clinical data
suitable for automated analysis and survival assessment.

The study protocol was approved by the institutional Ethics Committee (CEIm 2022-
377-1), and all participants provided written informed consent before inclusion and treat-
ment. The study procedures were aligned with our previously reported research on
dysphagia screening and AI-based muscle composition analysis in HNC [21,23].

All RT-planning CT scans were acquired using a thermoplastic head-and-shoulder
mask and an individualized headrest to ensure reproducible immobilization in a neutral
position. This setup minimized anatomical variability and avoided angular deviations that
could interfere with the assessment of cervical muscle parameters, such as CSA C3 and
SMI C3.

2.2. Treatment, Recruitment Period and Follow-Up

All patients received curative-intent external-beam RT with IMRT/VMAT and daily
image guidance, according to institutional protocols. Target volumes were contoured
per international guidelines, and treatment plans were generated from the simulation CT
described above.

For definitive RT, the prescribed dose was 70 Gy in 35 fractions (2 Gy/fx) to the gross
tumor volume and 63–66 Gy to high-risk subclinical regions. For postoperative adjuvant
RT, total doses of 63–66 Gy were delivered depending on pathological risk factors.

Concurrent systemic therapy was administered in 64.6% of patients, consisting of
cisplatin-based chemotherapy (43.1%) or cetuximab (21.5%), depending on institutional
standards and patient eligibility.

The recruitment period extended from November 2019 to January 2021, including all
consecutive eligible patients treated at the Department of Radiation Oncology, University
Hospital of Gran Canaria Dr. Negrín (Las Palmas, Spain).

The index date for survival analyses was the start of RT. The primary endpoint was
OS, defined as the time from RT initiation to death from any cause. Patients alive at the
data lock were censored at the date of last documented follow-up.
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Follow-up was conducted according to institutional policy: clinical assessments during RT,
at 4–6 weeks after treatment, every 3–4 months during the first 2 years and every 6–12 months
thereafter. Vital status and dates of last contact were obtained from electronic medical
records and hospital administrative databases.

2.3. Image Acquisition and Body Composition Analysis

All patients underwent planning CT scans acquired in treatment position as part of the
standard RT workflow. No additional imaging or radiation exposure was required, as all
analyses were performed on these scans. Images were acquired using a Siemens Somatom
scanner (Siemens Healthineers, Erlangen, Germany). The scan range extended from the
cranial vertex to the carina, ensuring consistent coverage of the cervical musculature at the
C3 level.

CT slices were processed using the AI-based segmentation software FocusedON 2.1.0.
(ARTIS, Las Palmas de Gran Canaria, Spain; https://focusedon.es, accessed on 5 December
2025). Skeletal muscle was identified using a predefined HU window of −29 to +150,
and tissue-specific cross-sectional areas (cm2) were derived from voxel counts and pixel
dimensions. The resulting metrics—SMI (cm2/m2), IMAT (cm2), and HU—were exported
in tabular format for statistical analysis.

AI-based segmentation at the C3 level was generated by a custom 3D U-Net architec-
ture integrated into FocusedON 2.1.0. To ensure anatomical accuracy, a human-in-the-loop
workflow was applied, every axial slice around C3 was visually inspected, and manual
corrections were performed when needed by a trained radiation oncologist. The final
segmentation masks, therefore, corresponded to expert-validated contours equivalent to
manual ground-truth segmentation. The effective segmentation failure rate was zero,
because any mismatch was detected and corrected before data extraction. Standardized
RT-simulation imaging minimized inter-scan variability, and mandatory human review
prevented any AI-related inconsistencies from propagating into the dataset.

2.4. Model Development and Statistical Analysis

Statistical analyses were conducted using IBM SPSS Statistics, version 26 (IBM Corp.,
Armonk, NY, USA). Continuous variables were described using mean ± standard deviation
(SD) or median and interquartile range (IQR), depending on data distribution. Categorical
variables were reported as counts and percentages. The Kolmogorov–Smirnov test was
applied to evaluate the assumption of normality.

Univariable Cox proportional hazards regression analyses were first performed to
examine the association between patient, treatment and imaging-derived variables—SMI,
IMAT and HU—and OS. Variables with p < 0.10 in univariable analysis were subsequently
entered into a multivariable Cox regression model (enter method) to obtain adjusted hazard
ratios (HRs) with 95% confidence intervals (CIs).

A composite survival risk score, termed FUNC-RISK, was derived post hoc from the
regression coefficients of the final multivariable model, reflecting the combined prognostic
contribution of muscle quantity and quality parameters. Model discrimination was evalu-
ated using time-dependent receiver operating characteristic (ROC) curves, with calculation
of the area under the curve (AUC) at 36 and 60 months. For clinical interpretability, patients
were dichotomized into low- and high-risk groups, based on the median FUNC-RISK value.

OS was estimated using the Kaplan–Meier method and compared with the log-rank
test. Youden’s index was explored to identify alternative thresholds for FUNC-RISK,
reporting corresponding sensitivity and specificity. All statistical tests were two-sided, with
p < 0.05 considered statistically significant.

https://focusedon.es
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As an internal assessment of discrimination stability, Harrell’s concordance index
(C-index) was calculated for the FUNC-RISK score, using OS time and event status. A non-
parametric bootstrap procedure with 500 resamples was applied to estimate the variability
of the C-index. Additionally, as an exploratory sensitivity analysis, the cohort was randomly
partitioned into five folds. The C-index was recalculated within each fold to explore the
consistency of FUNC-RISK performance across different patient subsets.

Continuous variables were retained in their natural units to preserve clinical inter-
pretability. Multicollinearity among SMI, IMAT and HU was assessed, using pairwise
correlations and variance inflation factors (all < 2), confirming absence of problematic
collinearity. Given the exploratory pilot nature of the study and the limited number of
events, a conventional Cox model was favored over penalized regression approaches (e.g.,
lasso/ridge). This type of approach requires larger datasets and would reduce interpretabil-
ity of the resulting score.

3. Results
3.1. Patient’s Characteristics

A total of 65 patients with complete imaging and clinical data were included in the
present analysis. The characteristics of this prospective cohort have been described in detail
in earlier publications [21,23]. The patient selection process is summarized in Figure 1, and
the main demographic and clinical characteristics are presented in Table 1. The mean age
at diagnosis was 68.8 ± 10.4 years (range 48–90).

Table 1. Patient and treatment characteristics and their association with overall survival in univariable analysis.

Characteristic Patients (%) HR 95% CI p-Value

Age (years)
(68.8 ± 10.4, range 48–90) 1.036 0.997–1.075 0.069

Sex 0.957 0.333–2.750 0.935

Male 55 (84.6%)

Female 10 (15.4%)

Tumoral stage 0.836 0.35–1.99 0.676

E.I–II 18 (27.7%)

E.III–IV 47 (72.3%)

Tumor location — — 0.182

Nasopharynx 3 (4.6%)

Oral cavity 25 (38.5%)

Hypopharynx 7 (10.8%)

Larynx 26 (40%)

Other * 4 (6.1%)

Loco-regional treatment 0.720 0.29–1.80 0.466

Radiotherapy 37 (56.9%)

Surgery + radiotherapy 28 (43.1%)

Systemic treatment 1.011 0.47–2.18 0.977

No 23 (35.4%)

Yes 42 (64.6%)
* Other sites include squamous cell carcinomas of the maxillary sinus and major salivary glands.
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Figure 1. Patient’s flowchart.
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All patients had histologically confirmed squamous cell carcinoma of the head and
neck and were treated with curative intent, receiving either definitive RT (56.9%) or post-
operative adjuvant RT following surgery (43.1%), with or without concurrent systemic
therapy. The majority presented with locally advanced disease (stages III–IV, 72.3%) and
received concurrent systemic treatment (64.6%). At the data lock, in July 2025, the median
follow-up among survivors was 57 months.

Baseline body-composition parameters obtained from pretreatment planning CTs at
the C3 level are summarized in Table 2. Quantitative body-composition metrics were
automatically extracted using the AI-assisted CT-segmentation software FocusedON 2.1.0.
This tool provided consistent and reproducible measurements of muscle area, fat infiltration
and muscle attenuation.

Table 2. Body composition metrics derived from AI-based CT analysis. SD: standard deviation, IQR:
interquartile range.

Parameter Mean ± SD Median (IQR) Range

Cervical SMI (cm2/m2) 9.7 ± 1.9 9.6 (8.6–10.8) 5.4–13.5

IMAT (cm2) 31.6 ± 9.5 31.0 (24.0–38.0) 16.8–45.0

Mean muscle attenuation (HU) 37.9 ± 7.2 38.0 (33.0–43.0) 20.0–48.0

3.2. Survival Analysis and Model Performance

During follow-up, 29 deaths (44.6%) were recorded among the 65 patients included in
the study. In the univariable analysis, none of the patient-, tumor- and treatment-related
variables showed a statistically significant association with OS (Table 1).

Regarding the IA-assisted body composition analysis, the SMI and IMAT were asso-
ciated with improved OS, while HU showed a statistical trend. In the multivariable Cox
regression model, including all three variables, SMI and IMAT remained independently
associated with OS, whereas HU did not reach statistical significance.

Results from both univariate and multivariable Cox regression analyses are presented
in Table 3. Variables derived from automated AI-based quantification at the C3 level.
HRs < 1 represent protective effects. The multivariable model includes all three parameters
entered simultaneously.

Table 3. Relation of IA-assisted body composition parameters and survival in univariate analysis.

Variable HR 95% CI p-Value

Univariable analysis

SMI (cm2/m2) 0.715 0.563–0.909 0.006

IMAT (cm2) 0.929 0.864–0.999 0.047

Mean muscle attenuation (HU) 1.013 0.998–1.028 0.087

Multivariable analysis

SMI (cm2/m2) 0.695 0.529–0.913 0.009

IMAT (cm2) 0.917 0.843–0.996 0.041

Mean muscle attenuation (HU) 1.011 0.996–1.027 0.144

The β-coefficients obtained from the final multivariable model were used to generate
a continuous composite risk score, termed FUNC-RISK. Each coefficient reflects the relative
contribution of its variable to OS: negative values indicate a protective effect, whereas
positive values indicate a higher mortality risk. These coefficients, directly derived from the
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multivariable Cox model shown in Table 3, were combined to compute the individualized
survival risk score. FUNC-RISK was calculated using the following equation:

FUNC RISK = (−0.364 × SMI [cm2/m2]) + (−0.087 × IMAT [cm2]) + (0.011 × HU [Hounsfield Units]) (1)

Higher FUNC-RISK values indicate increased mortality risk. When applied to our
patient cohort, FUNC-RISK scores ranged from −4.67 to −1.34, with a median of −3.18
(mean = −3.10 ± 0.71). In univariable Cox regression, the FUNC-RISK score was signifi-
cantly associated with OS (HR = 2.69, 95% CI 1.48–4.90, p = 0.001), confirming that higher
FUNC-RISK values predicted poorer outcomes. Patients were then stratified according to
the median FUNC-RISK value, defining low-risk (n = 32) and high-risk (n = 33) groups.
Baseline characteristics according to these groups are summarized in Table 4. Categorical
variables were compared using χ2 or Fisher’s exact test, and continuous variables using
the Mann–Whitney U test. A p < 0.05 was considered statistically significant. “Other sites”
include nasopharynx, maxillary sinus and salivary gland tumors.

No statistically significant differences were observed between groups except for sex
(p = 0.044). 23 out of 32 low-risk patients (71.9%) were alive at the follow-up lock compared
with 13 out of 33 high-risk patients (39.4%) (p = 0.008).

Kaplan–Meier analysis showed significantly lower OS in the high-risk group compared
with the low-risk group (log-rank χ2 = 7.51; p = 0.006). At five years, actuarial OS was
71.9% ± 7.9% (95% CI 0.56–0.86) in the low-risk group and 39.4% ± 8.5% (95% CI 0.23–0.55)
in the high-risk group (Figure 2). Mean survival time was 54.1 months (95% CI 46.7–61.4)
in the low-risk group and 41.6 months (95% CI 33.2–49.9) in the high-risk group.

Figure 2. Kaplan–Meier curves of overall survival (OS) according to FUNC-RISK groups. The
low-risk group (blue) showed significantly higher survival than the high-risk group (red) (log-rank
χ2 = 7.51; p = 0.006).

The median OS was reached only in the high-risk group (41.0 months; 95% CI 16.1–65.9),
whereas median survival was not reached among low-risk patients at the time of analysis.
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Table 4. Comparison of demographic and clinical characteristics according to FUNC RISK group.

Characteristic Low Risk (n = 32) High Risk (n = 33) p-Value

Age, median (range) [years] 68 (48–85) 70 (50–90) 0.121

Gender 7 (21.9%) females
25 (78.1%) males

3 (9.1%) females
30 (90.9%) males 0.044

Tumor site 0.295

Nasopharynx 1 (3.1%) 2 (6.1%)

Oral cavity 14 (43.8%) 11 (33.3%)

Hypopharynx 12 (37.5%) 14 (42.4%)

Larynx 5 (15.6%) 2 (6.1%)

Other sites 0 (0%) 4 (12.1%)

Clinical stage 0.302

Stage I–II 7 (21.9%) 11 (33.3%)

Stage III–IV 25 (78.1%) 22 (66.7%)

Systemic therapy No = 10 (31.3%)
Yes = 22 (68.8%)

No = 13 (39.4%)
Yes = 20 (60.6%) 0.492

3.3. Model Discrimination (ROC Curves)

The discriminatory ability of the FUNC-RISK model was evaluated using time-
dependent ROC curves for OS prediction. The model achieved an AUC of 0.734 at
36 months (95% CI 0.604–0.863; p = 0.002) and 0.689 at 60 months (95% CI 0.558–0.819;
p = 0.009), indicating moderate prognostic discrimination.

Exploratory analyses using Youden’s index identified an optimal FUNC-RISK thresh-
old of –3.2962 at both 36 and 60 months, corresponding to sensitivities of 0.81 and 0.79 and
specificities of 0.50 and 0.56, respectively. The model showed comparable discrimination
across both time points, as illustrated in Figure 3.

Figure 3. Time-dependent receiver operating characteristic (ROC) curves for OS prediction using the
FUNC-RISK model at (A) 36 months and (B) 60 months.

These results indicate that FUNC-RISK provides consistent discrimination across time,
maintaining its prognostic accuracy over medium and long-term follow-up.
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In terms of global discrimination, the FUNC-RISK score achieved a Harrell’s C-index
of 0.67 for OS. Internal bootstrap validation (500 resamples) produced a mean C-index of
0.68 (approximate 95% bootstrap interval: 0.57–0.78), indicating moderate discrimination
with expected uncertainty, given the sample size. In an exploratory five-fold resampling
analysis, performance remained comparable across subsets (mean C-index 0.73; range
0.53–0.83), further supporting the internal stability of the score within this pilot cohort.

4. Discussion
This study developed and internally evaluated, for the first time, an AI-assisted sur-

vival risk score (FUNC-RISK) integrating cervical muscle quantity and quality parameters
in patients with HNC treated with curative-intent RT. The model demonstrated moderate
but consistent discrimination for OS (AUC = 0.734 at 36 months; 0.689 at 60 months), and
survival differed significantly between the low- and high-risk groups (p = 0.006), supporting
its potential clinical applicability. At five years, OS was 71.9% in the low-risk group versus
39.4% in the high-risk group. The median OS was not reached among low-risk patients,
while it was 41.0 months in the high-risk group. Together, these findings reinforce the
prognostic relevance of body-composition metrics derived from RT-planning CT scans.
They also highlight their feasibility for integration into risk stratification frameworks in
radiation oncology.

Compared with previously published AI-based tools—which have primarily focused
on diagnosing sarcopenia or automating muscle quantification—FUNC-RISK introduces
several distinctive elements. First, it integrates three complementary cervical-level body-
composition parameters (SMI, IMAT, and HU) into a single multivariable prognostic equa-
tion, specifically designed to predict OS rather than classify sarcopenia. Second, unlike most
existing models derived from abdominal (L3) imaging, FUNC-RISK is based exclusively on
C3-level measurements obtained from routine RT-planning CT scans, allowing universal
applicability in HNC without requiring additional imaging. Third, the model relies on
fully automated, clinically implemented segmentation, rather than research-based algo-
rithms, ensuring reproducibility and immediate clinical usability. Finally, FUNC-RISK was
intentionally developed without incorporating clinical or tumor-related variables, which
enabled us to assess the prognostic value of muscle quantity and quality independently
from other established determinants of survival.

Given the modest sample size and the exploratory nature of this pilot model, the HRs
obtained from the multivariable Cox analysis should be interpreted with caution. Although
the coefficients reflect the independent contribution of each imaging-derived parameter
within this cohort, statistical variability and potential model optimism cannot be excluded.
The internal discrimination analyses (bootstrap and five-fold resampling) further support
this interpretation, showing moderate but variable performance across subsets. Therefore,
the HR estimates should be considered hypothesis-generating until validated in larger
independent datasets.

The selection of SMI, IMAT and HU was based on biological plausibility. SMI captures
overall muscle quantity. IMAT reflects intramuscular fat infiltration, associated with
metabolic and inflammatory alterations, and HU represents muscle quality through tissue
density. Because each parameter describes a distinct dimension of muscle structure and
function, their combined use provides a more comprehensive assessment of muscle health
and of the prognostic relevance of these muscle characteristics in patients with head and
neck cancer.

In practical terms, FUNC-RISK combines three cervical muscle parameters (SMI, IMAT
and HU) into a single score that provides a direct estimate of survival risk using only the
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RT-planning CT scan. This allows clinicians to identify high-risk patients early and consider
timely nutritional, metabolic or functional interventions before their treatment begins.

From a clinical perspective, the marked separation of the Kaplan–Meier curves in-
dicates that high-risk patients experience earlier and more frequent mortality events, de-
spite receiving similar oncologic treatments. This suggests that FUNC-RISK may help
clinicians identify individuals who could benefit from closer surveillance, earlier nutri-
tional/functional assessment and proactive supportive care. Conversely, the more favor-
able five-year survival observed in low-risk patients reflects a more resilient physiological
reserve, which may help guide prognostic conversations with patients. The moderate
AUC values at 36 and 60 months further support the use of FUNC-RISK as a comple-
mentary tool to assist risk-adapted counseling and individualized follow-up strategies in
routine practice.

In everyday clinical practice, FUNC-RISK may help identify patients who could benefit
from early supportive interventions. For example, a patient classified as high-risk based on
low SMI, high IMAT and reduced HU could be referred for early nutritional counseling
or physical conditioning before starting RT, with the aim of improving physiological
reserve and treatment tolerance. Similarly, high-risk classification may prompt clinicians
to schedule closer follow-up visits during and after treatment to monitor weight trends,
functional status or overall recovery. Conversely, low-risk patients may be managed with
standard surveillance schedules, as their cervical muscle profile reflects greater baseline
resilience. These examples illustrate how FUNC-RISK could complement traditional clinical
factors to support individualized care pathways in head and neck oncology.

When examining the distribution of FUNC-RISK categories across treatment modali-
ties, both radical (n = 37) and adjuvant (n = 28) treatments included comparable proportions
of low- and high-risk patients. Specifically, the radical cohort contained 19 low-risk and 18
high-risk patients, while the adjuvant cohort included 13 low-risk and 15 high-risk patients.
No treatment modality showed a dominant clustering of either category. This balanced
distribution suggests that FUNC-RISK provides prognostic information that is applicable
across different therapeutic pathways in HNC.

4.1. Cervical Muscle Quantification and Prognostic Relevance

Cervical-level body-composition metrics derived from routine planning CT scans
have emerged as reliable surrogates for lumbar muscle assessment. Multiple studies
have demonstrated that cross-sectional muscle area and SMI measured at the C3 level
strongly correlate with L3 metrics and predict treatment-related outcomes and survival in
HNC [16,24–28]. These data validate cervical muscle estimation as a practical and accurate
alternative when abdominal imaging is not available.

Low SMI has consistently been associated with impaired functional capacity, increased
treatment-related toxicity and reduced survival in patients undergoing RT or chemoradio-
therapy [6,8,9,18,24,29,30]. Our findings align with this evidence, reinforcing the relevance
of pre-treatment muscle assessment as a prognostic biomarker.

Beyond muscle quantity, parameters of muscle quality—namely, mean attenuation
in HU and IMAT—also demonstrate prognostic significance [3,8,18,24]. Myosteatosis,
characterized by increased fat infiltration and reduced attenuation, is linked to systemic
inflammation and metabolic dysregulation, and it has been associated with worse survival
across cancer populations [3,18,24]. However, consistent with our observations, the relation-
ship between IMAT and survival is not uniformly linear. Several cohorts have reported no
association or even inverse trends, suggesting that IMAT may be influenced by patient phe-
notype, treatment exposures or regional muscle composition [18,24,30]. These discrepancies
highlight the complex interaction between muscle quantity, quality and systemic metabolic
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state, underscoring the need for further mechanistic investigation. Collectively, current
evidence supports cervical muscle metrics as biologically meaningful and independent
prognostic markers in HNC.

Importantly, the FUNC-RISK model was intentionally developed using only imaging-
derived muscle parameters to isolate their intrinsic prognostic value. This development
was independent of conventional clinical variables such as stage, age or systemic therapy.
Moreover, it minimizes potential confounding from tumor- or treatment-related factors
and allows a focused evaluation of muscle quantity and quality, as survival determinants.

Although traditional prognostic variables remain essential in clinical decision-making,
imaging-based models such as FUNC-RISK may provide complementary insight into
physiological and metabolic reserve. Accordingly, the model should be interpreted as a
biological complement—rather than a substitute—to established clinical predictors. Future
research in larger multicenter cohorts should evaluate the incremental prognostic value of
FUNC-RISK when combined with standard clinical variables.

4.2. Artificial Intelligence and Automated Segmentation

Traditional manual or semi-automatic segmentation methods are time-consuming
and subject to interobserver variability, which limits reproducibility and hinders clinical
translation [2,7,10,13,16,18]. Recent advances in deep-learning-based segmentation have
substantially improved this processing time [10,11,14,16]. Automated pipelines trained on
head-and-neck CT datasets have reported Dice similarity coefficients exceeding 0.95, sup-
porting their robustness for quantifying SMI, IMAT, and HU [2,10,16,21]. These approaches
allow rapid extraction of morphometric biomarkers directly from routine planning scans,
without additional imaging, radiation exposure or workflow modifications [7,13,16,18,21].

Within this framework, the FUNC-RISK model represents a novel step toward inte-
grating AI-derived body composition metrics into prognostic modeling. By combining
quantity and composition of cervical muscle into a single continuous score, FUNC-RISK
provides an objective, reproducible, fully automated imaging biomarker. It can also com-
plement established clinicopathologic factors for risk stratification and adaptive decision-
making [7,13,18,21,23]. This approach may facilitate the broader adoption of imaging-based
prognostic tools in routine head and neck oncology practice.

4.3. Strengths

The primary strength of this study is the use of fully automated AI-based segmen-
tation applied to routine RT-planning CT scans, enabling reproducible, objective, and
observer-independent quantification of cervical muscle parameters. The exclusive analysis
of pretreatment imaging avoids confounding related to treatment-induced anatomical or
metabolic changes. In addition, the inclusion of a homogeneous cohort of HNC patients
treated with curative-intent RT (definitive or postoperative), within a single institution,
enhances internal validity.

An additional strength lies in the rigorous methodological framework used for model
development. It incorporated multivariable Cox regression, time-dependent ROC anal-
ysis, and transparent reporting of model coefficients in order to ensure reproducibility
and facilitate future external validation. Additionally, the combined evaluation of both
muscle quantity (SMI) and muscle quality (HU and IMAT) extends beyond conventional
sarcopenia assessment and offers a more comprehensive characterization of muscle health
as a prognostic biomarker in HNC.

4.4. Limitations

This study has several limitations that need to be acknowledged. First, it was con-
ducted at a single center, with a relatively modest sample size. Thus, it may restrict
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generalizability. External validation in independent and larger cohorts is required to con-
firm the robustness of the FUNC-RISK model. Although this study was conceived as an
exploratory pilot analysis, methodological evaluations of pilot sample sizes indicate that
prognostic pilot studies commonly include 20–40 participants, when the aim is parameter
estimation rather than hypothesis testing [25]. Therefore, the present sample size aligns
with accepted ranges for pilot investigations. Nonetheless, some degree of model optimism
cannot be excluded, as suggested by the variability observed in the internal bootstrap
and resampling analyses, further reinforcing the need for multicenter external validation.
Likewise, the HRs derived from the multivariable model should be interpreted with cau-
tion, as the limited cohort size may introduce statistical instability despite the internal
validation procedures.

In addition, although calibration is a key component of prognostic model evaluation,
the present cohort (n = 65) included only 29 survival events. This number is insufficient to
generate reliable calibration curves or Brier scores. As recommended for pilot prognostic
studies, we therefore reported only discrimination metrics, acknowledging that calibration
analyses will require larger external cohorts, with adequate statistical power. The absence
of calibration assessment further reinforces the exploratory nature of this model and the
need for multicenter validation.

Second, although the segmentation process was fully automated through AI-assisted
software, minor residual errors in tissue labeling cannot be excluded. Third, body-
composition changes during treatment were not evaluated, and only baseline CTs were
considered. Longitudinal analyses could provide additional insight into dynamic risk
assessment. Finally, clinical variables such as nutritional interventions, inflammatory mark-
ers or comorbidity indices were not integrated into the model. Incorporating them could
enhance predictive accuracy in future studies.

Despite these limitations, the present study provides a methodological foundation
that may support future development, as well as validation of automated prognostic tools
in radiation oncology.

4.5. Clinical Implications and Future Directions

The clinical implementation of automated body-composition analysis has the potential
to enhance risk assessment in radiation oncology. Since RT-planning CT scans are rou-
tinely acquired for all patients, integrating AI-based segmentation directly into existing
workflows requires no additional imaging, radiation or cost. Automated extraction of cer-
vical muscle parameters could provide real-time information on nutritional and functional
status, complementing conventional clinical data and performance indices. In particular,
the FUNC-RISK score—by combining muscle quantity and quality metrics into a single
prognostic model—may help identify high-risk patients before treatment initiation. Thus,
it could enable early nutritional, metabolic or physical interventions aimed at improving
resilience and treatment tolerance.

From a precision-medicine perspective, models such as FUNC-RISK could contribute
to adaptive and individualized RT. Automated stratification may support treatment per-
sonalization by linking functional imaging biomarkers to outcome prediction, potentially
informing dose adaptation, concurrent therapy decisions, or closer clinical follow-up.
Moreover, incorporating these image-based biomarkers into multidisciplinary manage-
ment could improve patient selection for supportive care and for clinical trials that target
cachexia and sarcopenia in oncology.

Future research should prioritize external and multicentric validation of the FUNC-
RISK model across diverse populations and imaging platforms to confirm its generalizabil-
ity. Integrating the score with other emerging biomarkers—such as systemic inflammation
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indexes, radiomic texture features or molecular profiles—may further refine prognostic
accuracy. Ultimately, embedding AI-based body-composition analytics into hospital infor-
mation systems and treatment-planning software could enable fully automated, patient-
specific risk profiling in radiation oncology.

5. Conclusions
This pilot study presents the preliminary development and internal evaluation of

FUNC-RISK, an automated CT-derived prognostic score integrating cervical muscle quan-
tity and quality parameters in patients with HNC. FUNC-RISK demonstrated clinically
meaningful risk stratification and moderate prognostic discrimination, supporting the
relevance of cervical muscle metrics as complementary biomarkers in radiation oncology.
However, these findings should be interpreted with caution, given the single-center design
and limited sample size. Future research should focus on external validation in larger,
multicenter cohorts and on assessing the added prognostic value of FUNC-RISK when
combined with conventional clinical variables. Taken together, this work provides a foun-
dation for the potential integration of automated muscle-based imaging biomarkers into
personalized care pathways in HNC.
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