Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154141
Campo DC Valoridioma
dc.contributor.authorGarcia-Dominguez, Jesusen_US
dc.contributor.authorMarcos, J. Danielen_US
dc.contributor.authorBlanco - Marigorta, Ana Maríaen_US
dc.contributor.authorGarcia-Salaberri, Pablo A.en_US
dc.date.accessioned2025-12-29T10:06:21Z-
dc.date.available2025-12-29T10:06:21Z-
dc.date.issued2025en_US
dc.identifier.issn0196-8904en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/154141-
dc.description.abstractThis study presents the design, modelling, and optimisation of a novel zero-emissions polygeneration system fully powered by renewable energy sources. A new integration approach supported by an advanced optimisation framework is proposed to enhance the thermodynamic performance and overall efficiency. The system uniquely combines a hybrid Photovoltaic-Thermal (PVT) powered Organic Rankine Cycle (ORC) employing flexible Perovskite Solar Cell (PSC) technology, a double-effect compression-absorption refrigeration subsystem, and hydrogen production via a Proton Exchange Membrane (PEM) electrolyser. The cascading configuration maximises energy utilisation by recovering low-grade thermal energy, promoting synergistic operation, enabling simultaneous multi-carrier generation, and reducing exergy losses compared to standalone systems. Its applications are particularly relevant for both buildings and energy-intensive industrial processes, where integrated renewable solutions can provide high efficiency, flexibility, and emission-free operation. An advanced hybrid optimisation methodology coupling an Artificial Neural Network (ANN) with a multi-objective genetic algorithm is applied to identify optimal configurations through performance-cost trade-offs. For a three-objective function, the optimum design achieves an exergy efficiency of 19.1 %, net power output of 69.6 kW, and a cost rate of $ 14.2/h. Over a 20-year operation period, the system shows strong economic viability, yielding a payback period of 5.7 years, a Net Present Value (NPV) of $602,000, and an Internal Rate of Return (IRR) of 11.6 %.en_US
dc.languageengen_US
dc.relation.ispartofEnergy Conversion and Managementen_US
dc.sourceEnergy Conversion and Management [ISSN 0196-8904],v. 349, (Diciembre 2025)en_US
dc.subject331005 Ingeniería de procesosen_US
dc.subject.otherPolygenerationen_US
dc.subject.otherOrganic Rankine Cycleen_US
dc.subject.otherPhotovoltaic-Thermal (Pvt) Concentratingen_US
dc.subject.otherCollectorsen_US
dc.subject.otherCascaded Refrigeration Systemen_US
dc.subject.otherPEM Electrolyseren_US
dc.titleDesign and optimisation of a novel solar-driven ORC-based polygeneration system with hybrid PVT, cascade refrigeration, and PEM electrolysisen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.enconman.2025.120838en_US
dc.identifier.isi001641509500001-
dc.identifier.eissn1879-2227-
dc.relation.volume349en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages26en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:García-Domínguez, J-
dc.contributor.wosstandardWOS:Marcos, JD-
dc.contributor.wosstandardWOS:Blanco-Marigorta, AM-
dc.contributor.wosstandardWOS:García-Salaberri, PA-
dc.date.coverdateDiciembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
Colección:Artículos
Adobe PDF (7 MB)
Vista resumida

Visitas

16
actualizado el 11-ene-2026

Descargas

13
actualizado el 11-ene-2026

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.