Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/154141
DC FieldValueLanguage
dc.contributor.authorGarcia-Dominguez, Jesusen_US
dc.contributor.authorMarcos, J. Danielen_US
dc.contributor.authorBlanco - Marigorta, Ana Maríaen_US
dc.contributor.authorGarcia-Salaberri, Pablo A.en_US
dc.date.accessioned2025-12-29T10:06:21Z-
dc.date.available2025-12-29T10:06:21Z-
dc.date.issued2025en_US
dc.identifier.issn0196-8904en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/154141-
dc.description.abstractThis study presents the design, modelling, and optimisation of a novel zero-emissions polygeneration system fully powered by renewable energy sources. A new integration approach supported by an advanced optimisation framework is proposed to enhance the thermodynamic performance and overall efficiency. The system uniquely combines a hybrid Photovoltaic-Thermal (PVT) powered Organic Rankine Cycle (ORC) employing flexible Perovskite Solar Cell (PSC) technology, a double-effect compression-absorption refrigeration subsystem, and hydrogen production via a Proton Exchange Membrane (PEM) electrolyser. The cascading configuration maximises energy utilisation by recovering low-grade thermal energy, promoting synergistic operation, enabling simultaneous multi-carrier generation, and reducing exergy losses compared to standalone systems. Its applications are particularly relevant for both buildings and energy-intensive industrial processes, where integrated renewable solutions can provide high efficiency, flexibility, and emission-free operation. An advanced hybrid optimisation methodology coupling an Artificial Neural Network (ANN) with a multi-objective genetic algorithm is applied to identify optimal configurations through performance-cost trade-offs. For a three-objective function, the optimum design achieves an exergy efficiency of 19.1 %, net power output of 69.6 kW, and a cost rate of $ 14.2/h. Over a 20-year operation period, the system shows strong economic viability, yielding a payback period of 5.7 years, a Net Present Value (NPV) of $602,000, and an Internal Rate of Return (IRR) of 11.6 %.en_US
dc.languageengen_US
dc.relation.ispartofEnergy Conversion and Managementen_US
dc.sourceEnergy Conversion and Management [ISSN 0196-8904],v. 349, (Diciembre 2025)en_US
dc.subject331005 Ingeniería de procesosen_US
dc.subject.otherPolygenerationen_US
dc.subject.otherOrganic Rankine Cycleen_US
dc.subject.otherPhotovoltaic-Thermal (Pvt) Concentratingen_US
dc.subject.otherCollectorsen_US
dc.subject.otherCascaded Refrigeration Systemen_US
dc.subject.otherPEM Electrolyseren_US
dc.titleDesign and optimisation of a novel solar-driven ORC-based polygeneration system with hybrid PVT, cascade refrigeration, and PEM electrolysisen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.enconman.2025.120838en_US
dc.identifier.isi001641509500001-
dc.identifier.eissn1879-2227-
dc.relation.volume349en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages26en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:García-Domínguez, J-
dc.contributor.wosstandardWOS:Marcos, JD-
dc.contributor.wosstandardWOS:Blanco-Marigorta, AM-
dc.contributor.wosstandardWOS:García-Salaberri, PA-
dc.date.coverdateDiciembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
Appears in Collections:Artículos
Adobe PDF (7 MB)
Show simple item record

Page view(s)

16
checked on Jan 11, 2026

Download(s)

13
checked on Jan 11, 2026

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.