Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/153813
Campo DC Valoridioma
dc.contributor.authorCuervo-Londoño, Giovanny A.en_US
dc.contributor.authorReyes, José G.en_US
dc.contributor.authorRodríguez Santana, Ángelen_US
dc.contributor.authorSánchez Pérez, Javieren_US
dc.date.accessioned2025-12-17T19:27:24Z-
dc.date.available2025-12-17T19:27:24Z-
dc.date.issued2025en_US
dc.identifier.issn2079-9292en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/153813-
dc.description.abstractAccurate sea surface temperature (SST) forecasting in coastal upwelling systems requires predictive models capable of representing complex oceanic geometries. This work revisits grid-to-mesh coupling strategies in Graph Neural Networks (GNNs) and analyzes how mesh topology and connectivity influence prediction accuracy and artifact formation. This standard coupling process is a significant source of discretization errors and spurious numerical artifacts that compromise the final forecast’s accuracy. Using daily Copernicus SST and 10 m wind reanalysis data from 2000 to 2020 over the Canary Islands and the Northwest African region, we evaluate four mesh configurations under varying grid-to-mesh connection densities. We analyze two structured meshes and propose two new unstructured meshes for which their nodes are distributed according to the bathymetry of the ocean region. The results show that forecast errors exhibit geometric patterns equivalent to order-k Voronoi tessellations generated by the k-nearest neighbor association rule. Bathymetry-aware meshes with 𝑘=3 and 𝑘=4 grid-to-mesh connections significantly reduce polygonal artifacts and improve long-term coherence, achieving up to 30% lower RMSE relative to structured baselines. These findings reveal that the underlying geometry, rather than node count alone, governs error propagation in autoregressive GNNs. The proposed analysis framework provides a clear understanding of the implications of grid-to-mesh connections and establishes a foundation for artifact-aware, geometry-adaptive learning in operational oceanography.en_US
dc.languageengen_US
dc.relation.ispartofElectronicsen_US
dc.sourceElectronics [2079-9292 ], 14(24), 484. (2025)en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject2510 Oceanografíaen_US
dc.subject.otherSea surface temperature (SST)en_US
dc.subject.otherGraph neural networks (GNNs)en_US
dc.subject.otherGrid-tomesh couplingen_US
dc.subject.otherBathymetry-aware meshen_US
dc.subject.otherVoronoi partitionsen_US
dc.subject.otherArtifact mitigationen_US
dc.subject.otherOperational oceanographyen_US
dc.titleVoronoi-Induced Artifacts from Grid-to-Mesh Coupling and Bathymetry-Aware Meshes in Graph Neural Networks for Sea Surface Temperature Forecastingen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics14244841en_US
dc.identifier.issue24-
dc.relation.volume14en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages27en_US
dc.utils.revisionen_US
dc.date.coverdateDecember 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,164
dc.description.sjrqQ4
dc.description.miaricds9,9
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR ECOAQUA: Oceanografía Física y Geofísica Aplicada-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ecosistemas Marinos (IU-Ecoaqua)-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-1960-6777-
crisitem.author.orcid0000-0001-8514-4350-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ecosistemas Marinos (IU-Ecoaqua)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad-
crisitem.author.fullNameRodríguez Santana, Ángel-
crisitem.author.fullNameSánchez Pérez, Javier-
Colección:Artículos
Adobe PDF (6,84 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.