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Abstract

Accurate sea surface temperature (SST) forecasting in coastal upwelling systems requires
predictive models capable of representing complex oceanic geometries. This work revisits
grid-to-mesh coupling strategies in Graph Neural Networks (GNNs) and analyzes how
mesh topology and connectivity influence prediction accuracy and artifact formation. This
standard coupling process is a significant source of discretization errors and spurious
numerical artifacts that compromise the final forecast’s accuracy. Using daily Copernicus
SST and 10 m wind reanalysis data from 2000 to 2020 over the Canary Islands and the
Northwest African region, we evaluate four mesh configurations under varying grid-to-
mesh connection densities. We analyze two structured meshes and propose two new
unstructured meshes for which their nodes are distributed according to the bathymetry of
the ocean region. The results show that forecast errors exhibit geometric patterns equiva-
lent to order-k Voronoi tessellations generated by the k-nearest neighbor association rule.
Bathymetry-aware meshes with k = 3 and k = 4 grid-to-mesh connections significantly
reduce polygonal artifacts and improve long-term coherence, achieving up to 30% lower
RMSE relative to structured baselines. These findings reveal that the underlying geometry,
rather than node count alone, governs error propagation in autoregressive GNNs. The
proposed analysis framework provides a clear understanding of the implications of grid-
to-mesh connections and establishes a foundation for artifact-aware, geometry-adaptive
learning in operational oceanography.

Keywords: sea surface temperature (SST); graph neural networks (GNNs); grid-to-
mesh coupling; bathymetry-aware mesh; Voronoi partitions; artifact mitigation;
operational oceanography

1. Introduction

The monitoring and forecasting of oceanographic variables have gained increasing
importance over the last decade across various disciplines, including oceanography, cli-
matology, sustainable marine resource management, maritime navigation, and natural
disaster mitigation. Variables such as sea surface temperature (SST), salinity, currents, and
sea level are central to understanding the dynamic state of the ocean and its interactions
with terrestrial and marine ecosystems [1-3].
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Growing concerns about climate change and the intensification of extreme
events—such as hurricanes, marine heatwaves, and rising sea levels—have created
strong demand for fast, accurate, and computationally efficient predictive models to
support decision-making in fisheries, maritime transport, marine conservation, and
environmental policy.

Traditional physics-aware models provide a robust framework for simulating ocean
dynamics, although limited by factors such as high computational costs, sensitivity to initial
conditions, and the difficulty of representing complex marine environments on regular
grids [4,5]. Deep learning methods have emerged as scalable alternatives for modeling
oceanographic processes directly from observational data [6-8]. Among these, Graph
Neural Networks (GNNs) are particularly well suited for geophysical applications, as they
explicitly capture spatial relationships between observations through graph structures,
offering flexibility for modeling localized and irregular phenomena [9,10].

Nevertheless, the performance of GNNs is strongly influenced by the interaction
between the observational grid and the model’s latent mesh [11]. Observational data,
such as SST, are typically defined on structured spatial grids, and the mesh adopts a more
flexible topological structure. The way these two entities are coupled defines how efficiently
information flows during message passing and ultimately determines predictive accuracy.
Empirical evidence [12,13] shows that inadequate grid-to-mesh coupling can generate
systematic prediction artifacts, including polygonal patterns and discontinuities across
spatial tiles, which not only increase errors but also undermine the physical consistency
and reliability of forecasts over longer horizons.

This is particularly significant in strategically important regions such as the Canary
Islands and the northwest African coast, where the upwelling process drives high biological
productivity and sustains valuable fisheries. Accurate and timely SST forecasts in these
regions are vital for sustainable resource management and for anticipating ecosystem
responses to climate variability [14,15]. The recurrent appearance of localized artifacts in
SST prediction highlights a structural weakness in current graph architectures, as errors
tend to accumulate at tile boundaries and propagate through the prediction horizon.

To address this problem, we propose a systematic experimental framework that
explores how mesh design and connectivity patterns influence error dynamics in SST fore-
casting. Conceptually, the mesh embeds the forecasting process, while the grid defines the
physical observational lattice. By varying the number of connections per node, redistribut-
ing mesh nodes according to spatial complexity, and analyzing the resulting error maps, we
aim to uncover reproducible design principles that reduce artifacts and improve forecast
coherence. Our approach leverages high-resolution satellite products from Copernicus
Marine and Climate services [16], supported by auxiliary information such as bathymetry
and land-sea separation to ensure physically consistent data representation.

The aim of this work is thus twofold: first, to quantify how grid-to-mesh connectivity
influences the geometry and severity of prediction artifacts; and second, to evaluate how
strategic mesh reconfigurations can reduce errors and enhance the spatial coherence of
forecasts. Preliminary findings [11] indicate that connectivity plays a crucial role, with
approximately four connections per node mitigating artifact formation under the evaluated
conditions, while naively increasing node count alone does not guarantee improvement.
Instead, performance gains arise from node distributions in regions most susceptible to error.
These insights open the path toward more robust grid-to-mesh association mechanisms.

We explore four different mesh configurations. Starting from a structured and quad-
rangular structure [17], we propose a simplified version removing crossing edges. Then,
we derive two new unstructured mesh configurations based on a probability distribution of
the bathymetry: The first approach relies on a random distribution inversely proportional
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to the depth of the sea, whereas the second redistributes nodes more regularly to avoid a
high concentration near the coast.

Our results show that the optimal number of grid-to-mesh connections depends
on the type of mesh employed, and densifying the node distribution according to the
seabed’s topology reduces artifacts and increases the accuracy of forecasts. The experiments
demonstrate the better performance of bathymetry-based meshes with three and four
connections, improving by 30% with respect to the structured mesh baselines.

Section 2 relates our work to the current state of the art, particularly in relation to
forecasting with GNNs. In Section 3, we introduce the dataset and the geographical area of
this study, as well as the different strategies employed for mesh generation. The results in
Section 4 provide a detailed analysis of the influence of connections between the grid and
the mesh in the generation of artifacts, as well as the importance of the number of nodes for
improving accuracy. Finally, Sections 5 and 6 report the discussion of results and present
the main findings of this work.

2. Related Work

Predicting oceanographic variables represents one of the most complex challenges in
contemporary marine sciences, requiring the integration of multiple disciplines ranging
from fluid physics and atmospheric dynamics to advanced computational techniques and
artificial intelligence methods. The ocean, as a dynamic system, exhibits behaviors that
span time scales from seconds to decades and spatial scales from meters to entire ocean
basins, thus demanding diverse and complementary methodological approaches for its
understanding and forecasting [18].

Traditionally, predictive oceanography has been grounded in physical ocean model-
ing, employing fluid mechanics equations to describe ocean dynamics through general
circulation models, which have proven effective over decades. However, the exponential
development of artificial intelligence techniques and the massive availability of oceano-
graphic data have fostered the emergence of deep-learning-based ocean modeling as a
complementary—and in some cases, alternative—approach to traditional methods [19].

Deep-learning-based methods promise to overcome some inherent limitations of
physical models, such as the parameterization of subscale processes and high computational
costs, using algorithms that can learn complex representations directly from data. The
ability of these techniques to learn nonlinear representations from large volumes of data has
driven their application in tasks such as SST prediction, reconstruction of incomplete fields,
identification of dynamic structures, and detection of extreme events, among others [20].

Convolutional Neural Networks (CNNs) are particularly suitable for working with
oceanographic data. Their convolutional layers can automatically extract relevant spa-
tiotemporal patterns by leveraging the strong spatial and temporal correlations in marine
data. Temporal Convolutional Networks [21] have been shown to capture multi-scale
temporal dependencies in SST time series, and the combination of SST with auxiliary
variables [22,23], such as sea surface salinity, sea height, and ocean heat, helps improve re-
construction and extend forecast horizons. To address spatial heterogeneity, the Multi-Scale
Bayesian CNN [24] models uncertainty across scales, and 3D architectures like the 3D U-Net
CNN [25] and Spatiotemporal Siamese CNN [26] capture complex spatiotemporal patterns,
including regional variations and marine heatwaves. More advanced models [27,28] incor-
porate four-dimensional convolutions to represent vertical and horizontal ocean structures,
enhancing the spatial resolution of satellite SST maps.
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Recurrent Neural Networks (RNNs) have been widely applied in oceanographic
modeling due to their ability to capture complex temporal dependencies associated with
seasonal and interannual variability. LSTM [29] and GRU [30] models are commonly
used for the univariate and multivariate forecasting of oceanic variables. Hybrid ap-
proaches combining RNNs with Convolutional Neural Networks (CNNs) exploit CNNs
for spatial feature extraction and RNNs for temporal modeling. In particular, ConvL-
STM networks [31] have shown strong performance in spatiotemporal forecasting tasks,
such as in SST and chlorophyll prediction [32,33]. Further extensions [34-36], enhance
temporal learning through graph structures, semantic decomposition, and multi-source
data integration. Attention-based architectures [37] and hierarchical models [38] improve
feature selection and long-term forecasting stability. Additionally, the combination of
CNN-GRU with multilayer perceptrons [39] for multiscale learning and spatial correlation
modeling demonstrates the growing sophistication of RNN-based frameworks in ocean
prediction tasks.

GNN:ss are particularly well-suited for oceanographic modeling because they naturally
represent irregular spatial relationships among geographically dispersed locations [12].
In such models, nodes typically correspond to specific geographic positions, while edges
encode physical or functional connections, enabling both node and edge features to capture
complex spatiotemporal dependencies. Recent GNN-based approaches for SST predic-
tion have leveraged these capabilities through diverse architectural designs. For instance,
GNN-OAM [40] integrates multiple adjacency matrices and attention mechanisms to model
three-dimensional spatiotemporal interactions; GMNN [10] combines a graph encoder
with memory units to capture long-term temporal dependencies; DYGOV [41] introduces
a dynamic graph that evolves in response to oceanic and meteorological conditions; Hi-
GRN [42] employs hierarchical node clustering with multi-level attention to integrate local
and global spatial patterns, achieving improved global SST prediction performance.

GNNss are particularly effective for modeling complex geographic regions such as
coastal zones, archipelagos, and areas influenced by dynamic ocean currents [12,13,17].
The design of the mesh structure plays a pivotal role in balancing model accuracy and
computational efficiency. Global models such as GraphCast [43] employ multiresolution
icosahedral meshes to represent the entire planet, albeit at the cost of a high node count.
In contrast, local models like HI-LAM [44] use rectangular meshes to focus on specific
regions, while SeaCast [17] adapts mesh contours to irregular coastlines, such as those of the
Mediterranean, while maintaining a regular grid structure. However, regular meshes may
introduce visual artifacts at lower resolutions [12,13], and simply increasing the number of
nodes does not necessarily improve predictive precision and can even degrade performance
due to computational inefficiencies.

Rather than assuming that denser or bathymetry-aligned meshes inherently improve
accuracy [11], our findings indicate that the dominant factor is the association geometry be-
tween grid and mesh. Even topology-aware graphs impose order-k Voronoi partitions that
act as semi-isolated predictors, leading to structured temporal drift along tile boundaries.
Physical gradients like bathymetry are useful only when employed to reshape connectiv-
ity or redistribute nodes where per-tile RMSE slopes are steep, as they are not used as
standalone prescriptions for mesh design.

3. Materials and Methods

In this section, we introduce the dataset and the area of study used in this work,
related to the Canary Islands and the Northwestern African coast. Then, we explain the
GNN architecture and the different mesh configurations tested in this work. Finally, we
comment on the experiments and metrics used in the results.
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3.1. Dataset

The experimental dataset is a spatiotemporal series of SST and wind fields over the
Canary Islands region, derived from the Copernicus Marine Service Program and the
European Centre for Medium-Range Weather Forecasts, respectively. Specifically, we use
the SST reanalysis product [45], which provides daily observations at a spatial resolution of
0.05°. SST is a key physical variable for detecting upwelling processes and understanding
coastal dynamics.

To complement SST, we incorporate wind data at 10 m above the surface, using the
zonal (east-west) and meridional (north-south) components [46]. These variables provide
valuable information for characterizing upwelling intensity along the African coastline.
The temporal range covers 1 January 2000 to 31 December 2020, selected as the most recent
interval available through Copernicus services.

The data were retrieved in NetCDF format. For each date-time d, the variables were
organized into three-dimensional arrays (A; € R?*Axf), where ¢ and A represent the
latitudinal and longitudinal coordinates of the 300 x 300 ocean grid cells, respectively,
and f denotes the set of physical variables. Before storage, values were filtered using a
land-sea mask, discarding land points. Missing values were set to zero, and dimensions
were homogenized to ensure compatibility with GNN architectures.

The study area lies within the Iberia—Biscay-Ireland (IBI) oceanic region, as shown
in Figure 1. Table 1 reports the spatial bounding box limits, covering coastal regions of
Northwest Africa, including Capes Blanco, Jubi, and Ghir, along with the Canary and
Madeira archipelagos.

Table 1. Geographic coordinates of the area of study.

Coordinates Minimum (°) Maximum (°)
Latitude 19.55 34.52
Longitude —20.97 —5.98

Differentiating marine and terrestrial cells is essential for model training and in-
ference. To this end, a binary land-sea mask was calculated, as shown in Figure 2. A
bathymetry-based mask was also generated using NOAA’s ETOPO model [47], providing
depth information relevant for capturing nearshore variability. The bathymetric data were
downscaled to match the grid resolution of the SST fields (see Figure 2). These masks
supply physical context to the model and improve performance in regions characterized by
strong topographic gradients.

3.2. Graph Neural Network and Mesh Design

The predictive framework employs an encoder—processor-decoder architecture based
on interaction networks [48]. Message passing is used to exchange information across
the latent mesh and the observational grid. This design aligns with recent geophysical
models such as GraphCast [43], Hi-LAM [44], and SeaCast [17], which demonstrate the
flexibility of bipartite grid-to-mesh graph G = {VG, VM, M, £G2M eM2G1 representations
for data-driven climate forecasting. The model configuration used here isolates the role
of mesh design and connectivity by holding hyperparameters and optimization choices
constant across experiments.
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Figure 1. Summer (June-August) climatology of SST (°C) across the Northwest African region.
The main figure illustrates the coastal temperature pattern. Dashed grey contour lines denote the
bathymetry, highlighting seafloor features associated with upwelling processes. The small globe in
the bottom-right corner shows the IBI (Iberian-Biscay-Ireland) region from the Copernicus dataset,
with the study area outlined in red to indicate its position relative to the larger domain.
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Figure 2. Spatial fields over the Canary Islands region. (Left): Land-sea mask distinguishing ocean
(black) from land (white). (Center): Bathymetry (in meters). (Right): Sea surface temperature (SST, in

Kelvin) on 1 January 2018.

Four mesh construction strategies were considered with the following configurations:

*  Uniform Mesh with Crossing Edges (UC-mesh): Adapted from SeaCast, in this strat-
egy, nodes lie on a regular orthogonal grid with up to eight connections, including
diagonals. While this maximizes neighborhood density (Figure 3a), triangle intersec-

tions increase edge count and computational cost.

*  Uniform Mesh without Crossing Edges (U-mesh): In this second strategy, the position
of nodes is also orthogonal as before, and edges are obtained through a Delaunay
triangulation. In this case, edges do not cross, avoiding diagonal intersections (see
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mesh node (vM € VM) to its spatial neighbors; second, grid-to-mesh edges (e

Figure 3b). This reduces edge density while preserving spatial coverage. This configu-
ration resembles the GraphCast model [43] in that edges do not cross, although it is a
global atmospheric model that relies on an icosahedral mesh structure.
Bathymetry-aware Mesh (B-mesh): In this case, node density is adapted to bathymet-
ric variability, motivated by the greater bathymetry-driven SST gradients in coastal
upwelling regions. Points are sampled according to probability distributions derived
from normalized depth values. This improves spatial representation in coastal areas.
Edges are also established using a Delaunay triangulation, as shown in Figure 3c.
Based on the bathymetry (B(x,y)) shown in Figure 2, we normalize the values in [0, 1]
using min—-max normalization:

= B<x/ y) — Bmin

B(x,y) = ——— 1
( y) Bmax — Bmin ( )

Nodes are placed based on the following probability function:

1

- if B(x,y) >0,
D(x,y) = $ \/B(x,y) )

0 if B(x,y) =0,

and then, the distribution P(x,y) = D(x,y)/ L, D(x,y) is used to place nodes non-
uniformly. This strategy adapts better to the coast geometry, although it tends to
concentrate a large number of nodes near the coast, leaving few points to represent
extensive deeper areas.

FPS Bathymetry-Based Mesh (F-mesh): This strategy aims to solve the drawbacks
of the previous one, maintaining a more homogeneous node separation while still
relying on the bathymetry. It covers the whole region by distributing the nodes
adaptively using the Farthest Point Sampling (FPS) algorithm [49] and a more balanced
distribution. To achieve this, we use the following function:

1

Di(x,y) = q 1+ eXp<B(x’Ié)R_Bi>

0 si B(x,y) =0,

if B(x,y) > 0,

(3)

where B; represents the value corresponding to the i-th percentile of the bathymetry,
and IQR = Q3 — Qj denotes the interquartile range: that is, the difference between
the third and first quartiles of the bathymetric distribution. We can then use the
probability distribution Pi(x,y) = D;(x,y)/ Ly, Di(x,y) to position the nodes in the
mesh. This allows us to flexibly adjust the number of nodes in each area by varying the
value of 7, although we can also define a linear combination between two distributions
as follows:

P(x,y) = a- Pi(x,y) + (1 — a) - Pi(x,y), 4)

where « € [0,1]. If we choose i = 25 to give greater weight to the coastal zone and
j = 50 to the deep ocean area, this relation allows us to flexibly balance the nodes
between the coast and the ocean in a controlled manner. In our experiments, we used
« = 0.7. This mesh configuration is shown in Figure 3d.

All meshes are preprocessed by removing land nodes and equipped with an en-

coder/decoder scheme following the hierarchical design of [17,44]. Three edge types
define the connectivity: First, bidirectional mesh-to-mesh edges (eM*M ¢ £€M?M) link each

G2M c gGZM)
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connect every grid cell (vC € VO) to its k-nearest mesh nodes (vM € VYM); third, mesh-
to-grid edges (eM?C € £M?G) close the cycle by projecting information back to the grid.
Unlike earlier implementations, the hyperparameter k explicitly enforces a fixed number
of encoder/decoder connections (ekGZM/ MZG) per node (v,?, oM, guaranteeing consistent
coverage across the domain.

300 300

X XX
250 3 250 / ‘

X RO N N
200 1 200 <

o )
150 >< 150
/
100 A 100 4 /
50 A 504
N ST
° 50 100 150 200 250 300 % 50 100 150 200 250 300
(a) Crossed-edge Mesh (UC-mesh). (b) Uniform Mesh (U-mesh).
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(c) Bathymetry-aware Mesh (B-mesh). (d) Farthest Point Sampling Mesh (F-mesh).

Figure 3. Comparison of the four mesh-generation strategies used in the experiments. All meshes
contain 159 nodes but differ in node distribution and edge construction: UC-mesh includes 1090 edges
arranged in a crossed-edge configuration, increasing connectivity via diagonals; U-mesh consists of
848 non-crossing edges derived from a Delaunay triangulation; B-mesh contains 906 edges generated
from a bathymetry-weighted probabilistic sampling given by (2); F-mesh uses 858 edges connecting
sampled nodes along the coastline through an adaptive redistribution strategy calculated from the
bathymetry as in (3).

3.3. Experimental Configuration

In this work, we designed two main experiments to assess the performance of the mesh
configurations. On the one hand, we analyzed the influence of the connectivity between
the grid and the mesh and its role in generating visible artifacts. On the other hand, we
studied the influence of the number of nodes on the accuracy of the four strategies.
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3.3.1. Experiment 1—Grid-to-Mesh Connectivity

The number k € N* of ekGZM/ M2G connections per v¢ node was varied between k = 1
and k = 5 across the four mesh types, yielding 20 different configurations. Each model
was trained using the same number of epochs (150); the AdamW optimizer with A = 0.1,
B1 =0.9,and B, = 0.95; and a cosine-decay learning rate starting at 0.001. The loss function
was the weighted mean squared error (WMSE), given by

N
WMSE = - Y s miw (9 — y3)?, ®
i=1Mi j=1
where N is the number of nodes in the grid, m; € {0,1} is the binary land-sea mask defined
in Section 3, and w; is the latitude-based weight given by [50]
0; = = C?\]S(lati) , ©)
N L cos(lat;)
which accounts for the varying size of the cells produced by the spherical coordinates, and
s is the per-variable inverse variance of time differences. The ground truth value is given
by y;, and the prediction is given by f; in each point i of the grid.

Table 2 shows the configuration of meshes used in this experiment, with the number of
nodes and edges in each level. The number of nodes in the second layer of the F-mesh was
increased because a node became isolated. This isolation was due to a combination of the
morphology of the African coast and the operation of the farthest point sampling algorithm.
By adding a single node, we achieved a fully connected mesh without compromising the
comparison, as the total number of edges remains the same as in other configurations tested
in this experiment.

Table 2. Node and edge counts for the mesh configurations used in the grid-to-mesh connectivity
experiment. To ensure fair comparison across topologies, all four mesh types (U-mesh, UC-mesh,
B-mesh, and F-mesh) were constructed with approximately equal node counts at each resolution
level. The F-mesh has one more node in Level 2 to avoid an isolated node and to maintain a similar
number of edges.

Level 1 Level 2
U-Mesh UC-Mesh B-Mesh  F-Mesh U-Mesh UC-Mesh B-Mesh F-Mesh
Nodes 14 14 14 14 5 5 5 6
Edges 54 66 60 58 14 16 14 14

Finally, a factorial analysis contrasted the main effects of mesh configuration, connec-
tivity, and node density, as well as their interactions, on the target metrics. Differences
in means and variances across experiments, confidence intervals, and post hoc tests were
used to derive practical design criteria for robust grid-to-mesh coupling in geospatial
prediction tasks.

3.3.2. Experiment 2—Node Density

For each mesh configuration, the node density was increased following a geometric
progression with ratio ¢ ~ 1.618, consistent with the refinement ratios suggested in the
literature [51,52]. Fixed ratios simplify the control of spatial resolutions and error reduction,
and using a golden-ratio increment offers a useful middle ground between typical refine-
ment factors (~1.5 to 2), giving meaningful resolution improvements without a sharp rise
in computational cost. Alternative scaling schemes exist, but the golden ratio is favored
for its balance between refinement detail and computational cost in adaptive physical
simulations, where it reduces numerical discontinuities [53]. Similar advantages appear in
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geometric subdivision methods using ¢ for smoother multiresolution transitions [54], and
theoretical work shows that golden-scale hierarchies match scale-distributed processes like
turbulence [55], supporting ¢-scaling as suitable for multiscale modeling.

All experiments maintained consistent vertical levels and the same number of nodes
across mesh types. Mesh characteristics, including nodes and edges at hierarchical levels,
are summarized in Table 3.

Table 3. Node and edge counts per mesh configuration and hierarchical level. Each row corresponds
to a target (Level 1 and Level 2) configuration, with node and edge counts reported for all four

mesh types.
Level 1 Level 2

Config. Element B-Mesh F-Mesh UC-Mesh U-Mesh B-Mesh F-Mesh UC-Mesh U-Mesh
149 Nodes 14 14 14 14 9 9 9 9

Edges 60 48 66 54 32 24 36 30
20_9 Nodes 20 20 20 20 9 9 9 9

Edges 94 82 100 82 32 24 36 30
3420 Nodes 34 34 34 34 20 20 20 20

Edges 168 160 194 160 94 82 100 82
5227 Nodes 52 52 52 52 27 27 27 27

Edges 274 248 310 256 128 120 146 122
159_78  Nodes 159 159 159 159 78 78 78 78

Edges 906 858 1090 848 426 400 498 396

RMSE values are computed over the entire test set ad aggregated across the full date-
time span (d) to obtain RMSE; ;, where i stands for the flattened latitude-longitude grid
location, and t denotes the lead time.

4. Results

This section analyzes the effects of grid-to-mesh connectivity, node density, and mesh
topology on forecast accuracy and artifact formation. Unless otherwise stated, all models
were trained under identical optimization settings and evaluated over the same temporal
horizons: lead times spanning from 1 to 15 days, with global RMSE and per-tile RMSE; of
spatial gradients as primary metrics. Spatial diagnostics include error maps and automatic
artifact detection based on the geometry of grid-to-mesh associations.

4.1. Influence of Grid-to-Mesh Connectivity

Table 4 summarizes mesh performance across all connectivity settings. B-mesh and
F-mesh achieved the lowest RMSE (0.24 at k = 3 and k = 4), which improved the results
of the structured meshes by nearly 30%. Its refinement according to seabed morphology
concentrates resolution in coastal and high-gradient regions. However, the performance of
the B-mesh is more sensitive to connection count, with a greater variability than any other
mesh, as shown in Table 5 with std = 0.08, which indicates a strong dependency on tuning.

F-mesh, on the other hand, delivered the most consistent performance across con-
nection counts. Its best result, with an RMSE of 0.24 and k = 4 connections, is nearly as
good as B-mesh, but with less variance. Therefore, F-mesh offers a strong compromise
between accuracy and robustness. Structured meshes (U-mesh and UC-mesh) perform sim-
ilarly, with U-mesh slightly outperforming UC-mesh at their respective optima. Crossing
edges exhibit the lowest variability but consistently higher mean RMSE, indicating limited
adaptability compared with triangular meshes.
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Table 4. RMSE in Kelvin by mesh type and number of grid-to-mesh connections, k. The best value in
each row is in bold.

Mesh Type k=1 k=2 k=3 k=4 k=5
UC-mesh 0.36 0.42 0.39 0.42 0.4
U-mesh 0.42 0.34 0.44 0.37 0.37
B-mesh 0.48 0.38 0.24 0.34 0.36
F-mesh 0.38 0.42 0.34 0.24 0.35

When aggregated over all five connectivity levels, F-mesh achieved the best mean
RMSE (0.35 + 0.06), followed by B-mesh (0.36 + 0.08), U-mesh (0.39 + 0.04), and UC-mesh
(0.40 £ 0.02). These statistics (Table 5) highlight not only accuracy but also variability across
connection settings.

Table 5. Aggregate 15-lead-time RMSE statistics.

Mesh Type Mean RMSE Std. Dev.
F-mesh 0.35 0.06
B-mesh 0.36 0.08
U-mesh 0.39 0.04
UC-mesh 0.40 0.02

These findings align with qualitative error maps for the B-mesh configuration, as
shown in Figure 4. Low-connectivity settings (k = 1, 2) accentuate polygonal discontinuities
and tessellation artifacts, likely explaining the poor performance of B-mesh with k = 1,
while intermediate connectivity (k = 3,4) reduces such artifacts and improves spatial
coherence. At k = 5, error maps show signs of plateauing or mild regression, likely due to
over-coupling and amplified message-passing interference.

Figure 5 depicts the evolution of RMSE across forecast horizons for the B-mesh
(k = 3,4) and F-mesh (k = 3,4) configurations. B-mesh with k = 3 and F-mesh with
k = 4 consistently produce better results, while the errors of the F-mesh with k = 3
and B-mesh with k = 4 are higher. Differences are negligible in the first 4-5 days but
increase progressively, reaching approximately 30% relative degradation by the 15th day,
emphasizing the operational significance of topology—connectivity interactions.

Table 6 shows the training and inference times for each mesh and connection count.

Increasing k increases the number of eszM/ M2G

and, therefore, memory and runtime. The
computational cost increases linearly with the number of connections. During training, each
additional edge adds on average between 6.6k and 6.8k seconds (~1.8 h), corresponding
to a relative increase of approximately 30% per edge compared to the k = 1 case. In
inference, the impact is substantially lower: around 570 s per edge (=10 min), equivalent to
a ~25% increase.

These results indicate that moderate connectivity (3—4 links per node) balances infor-
mation flow and error control, while trimming excess edges reduces computational costs
without performance loss. Bathymetry-based meshes, particularly F-mesh with mixed-
sigmoid densification, yield smoother coastal errors, highlighting the importance of spatial
adaptability. Forecast skills are mainly shaped by mesh topology after the first few days,
and benefits become evident once resolution surpasses a critical threshold.
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Figure 4. Spatial distribution of RMSE at 15-day lead time for the B-mesh configuration under
varying connectivity levels (k = 1 to 6). Lower connectivity (k = 1,2) produces remarkable polygonal
discontinuities and tessellation artifacts, particularly along coastal headlands, whereas intermediate
connectivity (k = 3,4) improves spatial coherence and suppresses mesh-induced distortions. The
results for k = 6 are included beyond the predefined range k < 5) to verify that performance does
not improve for a larger number of connections, further supporting k = 3 as an optimal trade-off
between coverage and over-coupling.

0.35] — B-mesh k=3
—+— B-mesh k=4
—4&— F-mesh k=3
0.30] —t— F-mesh k=4

0.05

2 4 6 .8 10 12 14
leadtime [days]

Figure 5. Average RMSE as a function of forecast lead time for the four best-performing topol-
ogy—connectivity configurations: B-mesh (k = 3,4) and F-mesh (k = 3,4). Two distinct performance
bands emerge beyond day 5, with B-mesh (k = 3) and F-mesh (k = 4) maintaining consistently
lower error growth compared to B-mesh (k = 4) and F-mesh (k = 3). Error differences widen
progressively toward day 15, highlighting the sensitivity of long-range forecasts to mesh topology
and connectivity order.
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Table 6. Training and inference runtime (seconds) across mesh configurations and k values, measured
on a remote server with 8x Quadro RTX 4000 GPUs and 8 GB of memory.

k Type B-Mesh F-Mesh UC-Mesh U-Mesh
1 Training 24211 24,086 24,045 24,280
Inference 1294 1353 1346 1350
2 Training 29,969 30,128 29,682 30,151
Inference 1865 1917 1917 1918
3 Training 37,293 37,018 36,571 36,982
Inference 2485 2536 2542 2537
4 Training 43,767 43,114 42,794 42,946
Inference 2952 3005 3004 3002
5 Training 51,728 51,448 50,628 50,801
Inference 3607 3660 3655 3653

4.2. Influence of Bathymetry and Regime Imbalance

The analysis of RMSE distribution across bathymetric ranges, visualized through
box plots and sample size histograms (Figure 6), reveals a critical physical regime im-
balance. The upper histogram highlights a skewed data distribution, with the coastal
domain (<500 m) representing a significantly underrepresented minority compared to the
open ocean. This scarcity correlates directly with model instability: The box plots in the
shallow regime exhibit the largest interquartile ranges and whisker extensions, indicating
maximum error variance and uncertainty. In contrast, the deep ocean regime (>1000 m)
is characterized by compact boxes and stable medians, reflecting the GNN’s robust per-
formance in the dominant, physically homogeneous class. These results suggest that the
network’s optimization is biased towards the abundant deep-water samples, failing to
generalize to the complex, data-scarce coastal dynamics where boundary effects and local
variability prevail.

Lead time: 15 day
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0 1000 2000 3000 4000 5000

Depth [m]

Figure 6. Dependence of predictive performance on ocean depth for B-mesh (k = 3) at 15-day
forecasts. (Top panel): Histogram showing the frequency of grid cells across bathymetric ranges,
illustrating the skewed distribution of data towards deep-water regions. (Bottom panel): Box plots of
RMSE (K) versus depth (m). The plot reveals an inverse relationship between bathymetry and error
variability: Coastal and continental shelf regions (0—1000 m) are characterized by high uncertainty
and large error spread, whereas the abyssal plain (>3000 m) demonstrates robust model performance

with compact error distributions.

4.3. Artifact Formation and Order-k Voronoi Effects

The spatial organization of the prediction error reveals a strong geometric imprint
induced by the grid-to-mesh association. For the lowest connectivity (k = 1), the resulting
partition closely resembles a first-order Voronoi diagram: Each mesh node defines a convex
region, and the associated boundaries emerge where the Euclidean distance of two nodes
is equal. The discontinuities in the RMSE field align with these borders, forming sharp,
polygonal divisions across the domain (Figure 7). In this regime, tile boundaries are
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simple and coherent, and the geometry is dominated by the distance-based isolation of
individual nodes.

This observed geometric structure is not incidental but arises because the underlying
grid-to-mesh coupling mechanism is mathematically equivalent to generating an order-
k Voronoi diagram [56]. The formulation begins by defining the total number of mesh
nodes as 1 = |VM|. The association mechanism, often implemented as the spatial distance
d(-,-) (e.g., KD-tree search), identifies a generator subset P¥(v®) C VM for every grid node
vC € VG, This subset consists of the k € N* mesh nodes closest to v©. Crucially, k represents
the fixed number of grid-to-mesh/mesh-to-grid connections (ekGZM/ M2Gy per node. The set
of all possible unique generator subsets is A¥, where | = | A¥| < (}). Each distinct subset
Pk € A¥ is explicitly defined as containing k mesh nodes, Pf = {oM, ..., oM}

Each subset P¥ defines a unique region known as an Order-k Voronoi Polygon, VP;
(Equation (7)). This specific polygon, VP;, represents one of the distinct polygonal error
regions (artifacts) observed in the prediction maps. It encompasses all grid nodes v© that
satisfy the following geometrical constraint:

VP; = {ZJG € V¢ | max (d(vG, vl,}/[)) < min (d(vG, vlg/[)) } (7)
vﬁAGPik ;

The full set of these polygons, VDy = {VPy, ..., VP;}, is the induced order-k Voronoi
diagram. This complete tessellation, which reflects deterministic changes in neighbor sets,
constitutes the spatial organization of the prediction error field. In the autoregressive
GNN, this partitioning ensures that each Voronoi tile VP; behaves as a semi-independent
predictor, causing errors to accumulate with distinct, tile-specific growth slopes over long
lead times.

This equivalence (Equation (8)) holds because the membership of a grid node (%) in
an Order-k Voronoi polygon (VP;) is entirely determined by its set of k nearest neighbors
oM. This relationship is formally proven by biconditional equivalence:

o8 € VP; <= Pk(oC) = PF (8)
where P¥(v5) is the function that returns the k-nearest neighbor set (Plk) of v©. Since each
polygon (VP;) is uniquely defined by a single k-element generator subset (Pl-k C VM), the
double inclusion is fulfilled: When the neighbor set of v© coincides with this generator subset,
the point satisfies the defining condition of the corresponding order-k Voronoi polygon; when
it differs, it necessarily lies outside its boundaries. Thus, the biconditional relationship arises
directly from the definition of the order-k diagram, where region boundaries occur precisely
at locations v where its associated P¥ changes.

As connectivity increases, the geometry of the induced partitions undergoes a qual-
itative shift. Instead of single-node dominance, each region is defined by overlapping
neighborhoods of multiple mesh nodes. The resulting tiles lose convexity, become irreg-
ular, and exhibit fragmentation or elongation in certain areas. This increase in geometric
complexity is spatially heterogeneous: Some zones retain simple structures, while others
subdivide into non-convex or highly anisotropic shapes. The average tile area decreases
with higher k, but this refinement does not translate into smoother error fields. Instead, the
boundaries persist and frequently intensify, especially at vertices where three or more tiles
converge, which act as localized amplification points for error growth under autoregres-
sive prediction.
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Figure 7. Spatial RMSE gradients at 15-day lead time highlight deterministic tiling artifacts imposed
by the grid-to-mesh connectivity (U-mesh). Although the polygonal discontinuities are already
present in the RMSE maps, the | VRMSE | representation makes the tile boundaries sharply visible.
Magenta color points denote mesh node positions over the spatial domain. Top panels show the
empirical gradient fields for different k settings, while bottom panels display analytically generated
order-k Voronoi partitions using the same neighbor rule, reproducing the same geometry. This
confirms that at longer lead times, the error field is governed by the tessellation induced by the
connectivity mechanism rather than stochastic model behavior.

To confirm the geometric origin of these patterns, the connectivity mechanism was
replicated using a synthetic mesh placed over a 300 x 300 domain (Figure 8). Each
grid point was assigned its k-nearest neighbors via the same KD-tree-based search used
in the encoder—decoder forecasting framework. The resulting partitions reproduced
the theoretical structure of order-k Voronoi diagrams described in the analytical litera-
ture [57], matching the reference formulation precisely. Applying the same procedure to the
U-mesh configuration from k = 1 to 5 yielded a tessellation with boundaries replicating
those artifacts, validating that the spatial organization of the RMSE gradients is a direct
consequence of the k-NN association (Figure 7). The discontinuities in the error are there-
fore not incidental: they reflect deterministic changes in neighbor sets across partition
interfaces.

Coastal boundaries truncate tiles and remove candidate neighbors, creating smaller
and more irregular cells than in offshore regions. Euclidean distances in latitude-longitude
space further introduce directional bias, particularly along the north-south axis, distorting
partition geometries. These geometric distortions interact with strong coastal SST gradients
and localized heterogeneity, amplifying error accumulation. To systematically capture these
effects, we introduce Error Analysis by Spatial Tessellation in Appendix A, a diagnostic
framework that partitions the domain into tiles and tracks the evolution of forecast errors
within each cell. Histograms of per-tile RMSE reveal heavy-tailed behavior near the coast
(Figure A2), while offshore tiles display more symmetric distributions. The tile-averaged
RMSE grows approximately linearly with lead time (Figure A3), but growth rates vary
sharply across space, with the steepest slopes concentrated along coastal bands.

Increasing k does not eliminate these discontinuities. Although higher connectivity
reduces individual tile size (Figure 7), it simultaneously increases fragmentation, irregu-
larity, and the frequency of intersections. The transitions between neighbor sets remain
discrete, preserving the geometric basis of the discontinuities. RMSE gradients continue
to align with the tile boundaries, and vertices formed by multi-tile intersections become
preferential sites for accelerated error propagation. The persistence of these structures
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indicates that artifacts arise from the intrinsic geometry of the k-NN mechanism rather than
from insufficient neighbor node count or model performance.
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Figure 8. Reproduction of the order-3 Voronoi diagram from [57], generated using the same site
configuration. In our framework, applying a grid-to-mesh association with k = 3 nearest neighbors
via KD-tree yields the same partition geometry, demonstrating that the connectivity mechanism is
mathematically equivalent to an order-3 Voronoi construction. This validates that the polygonal
artifacts observed in the | VRMSE| fields arise directly from the deterministic tessellation induced
by the k-NN association rule. Distinct colors represent different Voronoi regions, each defined by a
unique set of k-nearest neighbors.

The spatial structure of the RMSE is dictated by the grid-to-mesh association, where
tile geometry depends on connectivity and node placement. In autoregressive settings,
each tile acts as a semi-independent predictor with distinct error dynamics (Figure A3),
producing spatial-temporal heterogeneity. Artifact formation arises from the equivalence
between connectivity rules and a Voronoi partition, implying that mitigation requires
altering the association geometry rather than merely increasing connectivity.

4.4. Influence of the Number of Mesh Nodes

Across the four mesh configurations, RMSE trajectories remain nearly identical during
the first four to five lead-time days, regardless of node count, as can be observed in
Figure 9a. At these short horizons, forecast accuracy is primarily governed by initial
observational states and the intrinsic predictive skill of the model, leaving mesh topology
with negligible influence.

To rigorously quantify forecast uncertainty and validate performance differences, the
posterior distribution of the RMSE was modeled using Bayesian Neural Fields [58], generat-
ing a probabilistic ensemble of N = 240 samples. We applied a mean bias correction (“Error
Dressing”; [59]) and evaluated comparative performance using the distribution of paired
differences (d = RMSE4 — RMSEp), following [60] to account for temporal correlation.
Significance was determined via a Zero-Inclusion Criterion on the 66% credibility intervals,
as described by [61].

Applying this framework to the high-density node configuration (Figure 9b) reveals a
statistically significant divergence from day six onward. While structured meshes (U-mesh
and UC-mesh) show a steep increase in error, F-mesh and B-mesh sustain lower error
growth with paired difference intervals that consistently exclude zero. This confirms the
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existence of a temporal activation window: beyond day 6, error accumulation due to
autoregressive structural artifacts is significantly mitigated by the adaptive geometry of
unstructured meshes.

Conversely, when node counts are reduced, these statistical distinctions vanish across
the entire prediction horizon (Figure 9a). The 66% credibility intervals for the differences
largely overlap with zero, indicating that insufficient spatial resolution suppresses topology
effects. These results identify a spatial resolution threshold: below a critical node density
(e.g., 34 or 20 nodes), representational capacity becomes the dominant limiting factor,
rendering the choice between structured and unstructured designs statistically negligible.
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(a) Low-resolution mesh (14_09) configurations. (b) High-resolution mesh (159_78) configurations.

Figure 9. Forecast RMSE trajectories with associated uncertainty across prediction horizons for
different mesh configurations under two levels of spatial resolution. Solid lines represent the RMSE
mean (dressed RMSE), while shaded regions denote the 66% confidence intervals. (a) When the
number of mesh nodes is low (14_9), all four configurations exhibit nearly parallel error evolution,
with only minor divergence emerging after day 5. The substantial overlap of the confidence intervals
confirms that the minor divergence observed after day 5 is not statistically significant. The limited
spatial resolution constrains information propagation, suppressing the advantages of unstructured
meshes. (b) At higher node density (159_78), the separation beyond day 5 becomes much more
pronounced. Unstructured meshes (F-mesh and B-mesh) sustain lower error growth, with confidence
bounds distinct from the structured baselines, indicating superior long-range predictive skill once
spatial resolution is sufficient to exploit their adaptive placement.

A secondary observation relates to the role of diagonal crossing edges in the UC-mesh.
Configurations without crossing edges (U-mesh) occasionally show slightly more stable
trajectories than those with intersecting connections (UC-mesh), suggesting that excessive
edge proliferation may compound long-range error growth. However, this effect remains
secondary to the broader distinction between structured and unstructured designs.

At the seventh-day lead time, all configurations show marginal differences (Figure 10a),
with structured meshes sometimes presenting slightly lower RMSE than unstructured ones.
The error curves remain nearly flat across resolutions, reinforcing the dominance of initial
conditions at very short horizons.

By the tenth day lead time, a transitional regime emerges. Structured configurations
begin to show a gradual increase in RMSE with higher node counts (Figure 10b), while
the unstructured meshes remain stable or even improve modestly, particularly in the
bathymetric layout. This suggests that once the constraint of the initial state weakens,
topology-sensitive designs can better capture underlying SST variability.

At the fifteen-day horizon (Figure 10c), the divergence becomes pronounced. Struc-
tured meshes degrade substantially with increasing node count—especially in crossing-
edge cases—whereas unstructured designs either maintain or reduce RMSE levels as



Electronics 2025, 14, 4841

18 of 27

resolution increases. This inversion underscores that unstructured strategies not only
accommodate spatial heterogeneity more effectively but also scale more robustly with
forecast length.
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(a) Seven-day lead time. (b) Ten-day lead time.
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(c) Fifteen-day lead time.

Figure 10. Comparison of RMSEs across node densities at different lead times. While all configu-
rations behave similarly at seven lead times, structured meshes progressively degrade with higher
node counts at ten and fifteen lead times. In contrast, unstructured layouts exhibit more stable or

improving error performance as resolution increases.

Increasing node count alone does not guarantee improved forecast accuracy. At
higher spatial resolutions, differences between mesh families become apparent only
beyond day five. Here, unstructured meshes consistently outperform structured ones
(Figure 10c), demonstrating that the spatial organization and connectivity—not raw node
count—determine whether added resolution yields meaningful gains.

Notably, the B-mesh is highly effective at higher resolutions but performs compara-
tively worse at low node densities, indicating that adaptive placement requires a minimum
number of nodes to operate effectively. F-mesh exhibits an intermediate behavior but
similarly loses advantage when spatial capacity is limited.

Spatial analyses of squared-error fields at day 15 reveal clear contrasts among mesh
families as resolution increases. In structured meshes, artifacts remain visible even at higher
node counts (Figure 11a), although their footprint shrinks. Coastal regions consistently
emerge as hotspots of error due to the rigid and uniform connectivity of these grids, which
limits their ability to represent strong nearshore gradients.

Unstructured configurations exhibit smoother and more coherent error fields
(Figure 11b), with far fewer discretization artifacts. The B-mesh shows the clearest ad-
vantage: Errors near the coast are reduced, and offshore propagation is constrained more
effectively than in structured designs. Because node placement reflects underlying morphol-
ogy, transitions between coastal and open-ocean regions are better resolved, attenuating
artificial discontinuities.
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Figure 11. Spatial distribution of RMSE at 15-day lead time across increasing node densities for UC-
mesh and B-mesh configurations. Structured grids exhibit persistent polygonal tessellation artifacts
and concentrated coastal errors even at higher resolutions, reflecting limited adaptability to sharp
shoreline gradients. In contrast, the unstructured B-mesh produces smoother and more coherent
error fields, notably attenuating nearshore RMSE and constraining offshore error propagation due to

morphology-aware node placement.

F-mesh shows intermediate behavior. They benefit from increased resolution and lack
of rigid cell imprinting, but they do not suppress coastal error growth as consistently as
the bathymetric layout. Across lead times, unstructured meshes modulate not only the
magnitude but also the spatial evolution of RMSE. At higher node densities—particularly
in the B-mesh configuration—error growth remains more localized and physically coherent,
aligning with the statistical trends observed in the RMSE curves.

5. Discussion

A decisive step in interpreting these results is the geometric diagnosis of artifacts.
Geometric discretization schemes, such as Voronoi diagrams, can either introduce or reveal
heterogeneity. While such structures may be advantageous in physics-based numerical sim-
ulations [62], in autoregressive GNN-based models, they can become an unintended source
of structured error. The grid-to-mesh association induces partitions that are algebraically
equivalent to order-k Voronoi diagrams [57]; tile boundaries in these diagrams align with
the polygonal error patterns observed in the RMSE maps. This explains the persistence of
artifacts in autoregressive settings: Each tile behaves as a partially isolated predictor with
its own error trajectory (Figure A3), producing approximately linear per-tile RMSE slopes
that diverge over lead time. Hence, the core issue is not only error magnitude but the
spatial-temporal heterogeneity of error accumulation determined by association geometry.

While geometric analogies with traditional discretization methods such as the finite el-
ement method are conceptually relevant—both involve mesh-induced partitions that shape
error patterns—the present work does not aim to establish a formal numerical equivalence
or perform a horizontal comparison with FEM. Our focus is instead on diagnosing artifact
formation within GNN-based grid—mesh associations.

Beyond the geometric artifacts discussed above, a secondary source of error arises
from the unequal distribution of training data across depth regimes. Regardless of the
mesh topology, the error magnitude intensifies significantly in nearshore zones. As shown
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in Figure 6, the error profile reveals a bottleneck in shallow waters that is distinct from the
tessellation patterns: The model exhibits its highest uncertainty in these regions due to a
severe class imbalance between the dominant deep-ocean samples and the narrow coastal
margins. This class imbalance is consistent with the inherent morphology of the ocean floor.
The spatial extent of abyssal plains (typically ranging from 3000 to 6000 m) vastly exceeds
that of continental shelves (0-200 m) and slopes, which exist only as narrow transitional
margins bordering the landmasses. Consequently, the dominance of deep-water samples is
not a sampling artifact, but a direct reflection of the natural bathymetric distribution within
the study area.

Some studies suggest a direct trade-off between accuracy and node count [63], as-
suming that denser meshes typically lead to lower error, reinforcing the idea that more
nodes yield better accuracy. However, our results bring into question this perspective by
clarifying why indiscriminate increases in k connections or node count are insufficient.
While unstructured meshes (F-mesh and B-mesh) coupled with intermediate number of
connections (k = {3,4}) reduce artifact incidence and long-horizon RMSE, the effect is
topology-dependent: In highly structured lattices (U-mesh and UC-mesh), increasing the
number of mesh nodes reduces the area associated with each node—meaning that fewer
grid points contribute information to each mesh node. Because these lattices have uniform
edge lengths, the edge embeddings become highly redundant, providing limited new
information to the learning process.

Higher k increases training costs and memory/latency, while overly dense structured
meshes can degrade performance due to reduced input diversity and geometric redundancy.
Our results show that a careful hyperparameter selection preserves accuracy while reducing
total computational cost, using a intermediate k. In practice, latent mesh capacity should
be concentrated in coastal zones and regions with steep error gradients, where capturing
finer-scale structures is essential for improving forecast accuracy.

Conceptually, the results establish a direct link between artifact morphology and
discrete computational geometry: When the association mechanism is equivalent to an
order-k Voronoi diagram, partition properties predict where and how artifacts arise. This
reproduces prior empirical observations [12,13] (e.g., polygonal seams, tile discontinuities)
and provides a predictive analytical tool to guide design choices.

In oceanographic forecasting with GNNs, the connectivity between the observational
grid and the latent mesh (encoder/decoder) must be treated as a tunable design hyper-
parameter rather than a fixed architectural choice. Unlike other domains where this
component may be incidental or predefined [17,44], here, the mesh'’s spatial density, distri-
bution, and connectivity to the observational grid directly control prediction accuracy and
artifact behavior. Tailored interventions, such as redistributing nodes in sensitive regions,
as demonstrated in other works [64,65]; adjusting connectivity by weighting edges accord-
ing to their angular span in the Voronoi diagram [63]; or removing redundant crossings,
can suppress discontinuities without excessive computation. Bathymetry-aware layouts
generally enhance coastal consistency, whereas regular lattices with diagonal links tend to
amplify seams.

Three avenues emerge for advancing oceanographic GNNs. The association between
grid and mesh should move beyond rigid order-k matching toward stochastic or affinity-
weighted connections, diffuse neighborhoods, or spatial kernels that soften partitions. Local
artifact control can be achieved through tile-level corrections informed by RMSE trends, us-
ing adaptive latent meshes, mesh-to-grid residual connections, or even non-autoregressive
and hybrid decoders to reduce temporal heterogeneity. Decisions on increasing k or node
density should be guided by explicit temporal and spatial RMSE statistics and validated
across regions, variables (e.g., winds, salinity), and resolutions to assess generality. Statisti-
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cal diagnostics that uses our proposed Error Analysis by Spatial Tessellation (Appendix A)
could ultimately act as inference-time controllers, triggering adaptive responses before
coherence breaks down. Together, these steps outline both a geometric perspective and
a concrete toolkit for anticipating and suppressing artifacts before they erode physical
compliance and operational value.

This study does not yet account for the seasonal dependence of SST prediction errors,
nor does it assess model behavior across contrasting oceanographic regimes beyond the
Canary Islands—-Northwest Africa region. These two aspects—seasonal robustness and
cross-regional generalization—remain important limitations of the present work and will
be the focus of our future research.

6. Conclusions

This work identifies the geometry of the grid-to-mesh coupling as the primary driver
of artifacts that undermine geospatial forecast quality. The association mechanism is
algebraically equivalent to an order-k Voronoi partition, so each tile acts as a partially
isolated predictor for which its errors accumulate with approximately linear, tile-specific
slopes. Consequently, indiscriminately increasing connectivity or node count is insufficient;
effective mitigation requires controlling the coupling geometry. In practice, intermediate
connectivity (k = {3,4}) and bathymetry-aware configurations reduce polygonal seams and
long-horizon RMSE, especially when coupling emphasizes smooth information exchange
across tile boundaries.

Operational recommendations follow a cost-benefit logic. Latent node capacity should
be allocated strategically, prioritizing high coastal SST gradients (upwelling zones) and
regions with steep per-tile RMSE; slopes rather than increasing the number of nodes
indiscriminately. In structured mesh configurations, excessive node proliferation can, in
fact, degrade performance, underscoring that connectivity must be scaled in line with
available training time and memory resources. The k parameter should be treated as a
critical methodological choice, guided by spatial error diagnostics such as Error Analysis
by Spatial Tessellation.

Future work should explore more flexible association mechanisms to soften tessellation
boundaries and reduce interface artifacts. Additional directions include localized correction
strategies informed by spatial error signals, alternative decoding schemes that mitigate
temporal drift, broader validation across domains and variables, and principled analyses
linking mesh connectivity and sampling density to artifact behavior.
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Appendix A. Error Analysis by Spatial Tessellation

The RMSE discontinuities observed in the spatial fields follow the boundaries of
the order-k Voronoi-type tessellation generated by the k-NN connectivity (Figure Ala).
Nearshore cells are truncated by the coastline and exhibit higher environmental gradients,
resulting in systematically larger and more irregular prediction errors.

Per-cell RMSE distributions reflect this contrast: coastal tiles display skewed or heavy-
tailed histograms, while offshore cells tend toward near-Gaussian behavior (Figure A2).

Alongside RMSE-based metrics, the spatial error was assessed using gradient compar-
isons per-tile § (RMSE;(t)):

N,
RMSE (1) = Y RMSE, (1), (A1)

i=1
where the subscript / = 1,..., N; denotes the tile index, and the bar stands for the initial
spatial averaging over all points within that tile, thus leaving the function exclusively
dependent on lead time t. The final aggregated metric is then computed by taking the
derivative with respect to the lead time, %, of this spatially averaged function for each tile,
which yields the instantaneous slope, and subsequently calculating the arithmetic mean of
these slopes across all tiles.
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Figure A1l. Spatial (a) and error-growth (b) diagnostics of RMSE asymmetry between coastal and
offshore regions. Panel (a) shows U-mesh (k = 1) spatial artifacts aligned with Voronoi tessellation
boundaries, where tessellation cells near the coast are distorted by land proximity. Panel (b) quantifies
this effect: coastal cells exhibit higher mean RMSE, larger variability, and steeper RMSE growth across
lead times compared to offshore regions. Colors in the inset of (b) encode the RMSE slope, indicating
faster error accumulation in coastal areas.
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Figure A2. U-mesh (k = 1) 15-day lead-time RMSE histograms by tessellation cell: coastal versus
offshore behavior.

The temporal evolution of mean RMSE, () per cell increases approximately linearly
with lead time (Figure A3); however, the slopes vary markedly across the tessellation, with
the steepest growth confined to coastal regions (Figure Alb).
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Figure A3. Evolution of U-mesh (k = 1) across forecast lead times for each tessellation cell. Slopes are
estimated using linear regression.

Spatial error organization arises from the joint effect of connectivity geometry and
coastal constraint (Figure Ala,b), leading to a marked contrast between nearshore and
offshore error regimes.
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